These requirements are prepared by embedding related IACS Unified Requirements. In order to have consistency, the numbering of the requirements are kept as the same with related IACS Unified Requirements.

Unless otherwise specified, these Rules apply according to the implementation dates as defined in each requirement. See Rule Change Summary on TL website for revision details.

This latest edition incorporates all rule changes.

"General Terms and Conditions" of the respective latest edition will be applicable (see Rules for Classification and Surveys).

If there is a difference between the rules in English and in Turkish, the rule in English is to be considered as valid. This publication is available in print and electronic pdf version. Once downloaded, this document will become UNCONTROLLED. Please check the website below for the valid version.

http://www.turkloydu.org

All rights are reserved by Türk Loydu, and content may not be reproduced, disseminated, published, or transferred in any form or by any means, except with the prior written permission of TL.
TÜRK LOYDU

Head Office
Postane Mah. Tersaneler Cad. No:26 Tuzla 34944 İSTANBUL / TÜRKİYE
Tel : (90-216) 581 37 00
Fax : (90-216) 581 38 00
E-mail : info@turkloydu.org
http://www.turkloydu.org

Regional Offices

Ankara
Eskişehir Yolu Mustafa Kemal Mah. 2159. Sokak No : 6/4 Çankaya - ANKARA / TÜRKİYE
Tel : (90-312) 219 56 34
Fax : (90-312) 219 68 25
E-mail : ankara@turkloydu.org

İzmir
Tel : (90-232) 464 29 88
Fax : (90-232) 464 87 51
E-mail : izmir@turkloydu.org

Adana
Tel : (90-322) 363 30 12
Fax : (90-322) 363 30 19
E-mail : adana@turkloydu.org
CONTENTS

TL-R E10 Test specification for type approval

TL-R E11 Unified requirements for systems with voltages above 1 kV up to 15 Kv

TL-R E13 Test requirements for Rotating Machines

TL-R E15 Electrical Services Required to be Operable Under Fire Conditions and Fire Resistant Cables

TL-R E16 Cable trays/protective casings made of plastic materials June 2002

TL-R E22 On board use and application of computer based systems

TL-R E24 Harmonic Distortion for Ship Electrical Distribution System including Harmonic Filters

TL-R E25 Failure detection and response of all types of steering control systems

* Deleted TL-R Es were revised by IACS. For revised version of IACS UR Es please click here.
Unified requirements for systems with voltages above 1 kV up to 15 kV

1. General

1.1 Field of application

The following requirements apply to a.c. three-phase systems with nominal voltage exceeding 1 kV, the nominal voltage is the voltage between phases.

If not otherwise stated herein, construction and installation applicable to low voltage equipment generally apply to high voltage equipment.

1.2 Nominal system voltage

The nominal system voltage is not to exceed 15 kV.

Note: Where necessary for special application, higher voltages may be accepted by TL.

1.3 High-voltage, low-voltage segregation

Equipment with voltage above about 1 kV is not to be installed in the same enclosure as low voltage equipment, unless segregation or other suitable measures are taken to ensure that access to low voltage equipment is obtained without danger.

2. System Design

2.1 Distribution

2.1.1 Network configuration for continuity of ship services

It is to be possible to split the main switchboard into at least two independent sections, by means of at least one circuit breaker or other suitable disconnecting devices, each supplied by at least one generator. If two separate switchboards are provided and interconnected with cables, a circuit breaker is to be provided at each end of the cable.

Services which are duplicated are to be divided between the sections.

Note:

1. This requirement implemented for high voltage systems which are installed in new ships contracted for construction on or after 1 July 2022.

2. The "contracted for construction" date means the date on which the contract to build the vessel is signed between the prospective owner and shipbuilder. For further details regarding the date of "contract for construction", refer to TL-PR 29.
2.1.2 Earthed neutral systems

In case of earth fault, the current is not to be greater than full load current of the largest generator on the switchboard or relevant switchboard section and not less than three times the minimum current required to operate any device against earth fault.

It is to be assured that at least one source neutral to ground connection is available whenever the system is in the energised mode. Electrical equipment in directly earthed neutral or other neutral earthed systems is to withstand the current due to a single phase fault against earth for the time necessary to trip the protection device.

2.1.3 Neutral disconnection

Means of disconnection are to be fitted in the neutral earthing connection of each generator so that the generator may be disconnected for maintenance and for insulation resistance measurement.

2.1.4 Hull connection of earthing impedance

All earthing impedances are to be connected to the hull. The connection to the hull is to be so arranged that any circulating currents in the earth connections do not interfere with radio, radar, communication and control equipment circuits.

2.1.5 Divided systems

In the systems with neutral earthed, connection of the neutral to the hull is to be provided for each section.

2.2 Degrees of protection

2.2.1 General

Each part of the electrical installation is to be provided with a degree of protection appropriate to the location, as a minimum the requirements of IEC 60092-201:2019.

2.2.2 Rotating machines

The degree of protection of enclosures of rotating electrical machines is to be at least IP 23. The degree of protection of terminals is to be at least IP44.

For motors installed in spaces accessible to unqualified personnel, a degree of protection against approaching or contact with live or moving parts of at least IP4X is required.

2.2.3 Transformers

The degree of protection of enclosures of transformers is to be at least IP23.

For transformers installed in spaces accessible to unqualified personnel a degree of protection of at least IP4X is required.

For transformers not contained in enclosures, see para 7.1.
2.2.4 Switchgear, controlgear assemblies and converters

The degree of protection of metal enclosed switchgear, controlgear assemblies and static convertors is to be at least IP32. For switchgear, control gear assemblies and static converters installed in spaces accessible to unqualified personnel, a degree of protection of at least IP4X is required.

2.3 Insulation

2.3.1 Air clearance

In general, for Non Type Tested equipment phase-to-phase air clearances and phase-to-earth air clearances between non-insulated parts are to be not less than those specified in Table 2.3.1.

Table 2.3.1

<table>
<thead>
<tr>
<th>Nominal Voltage (kV)</th>
<th>Minimum air clearance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(3.3)</td>
<td>55</td>
</tr>
<tr>
<td>6 (6.6)</td>
<td>90</td>
</tr>
<tr>
<td>10 (11)</td>
<td>120</td>
</tr>
<tr>
<td>15</td>
<td>160</td>
</tr>
</tbody>
</table>

Intermediate values may be accepted for nominal voltages provided that the next higher air clearance is observed.

In the case of smaller distances, appropriate voltage impulse test must be applied.

2.3.2 Creepage distances

Creepage distances between live parts and between live parts and earthed metal parts are to be in accordance with IEC 60092-503:2007 for the nominal voltage of the system, the nature of the insulation material and the transient overvoltage developed by switch and fault conditions.

2.4 Protection

2.4.1 Faults on the generator side of circuit breaker

Protective devices are to be provided against phase-to-phase faults in the cables connecting the generators to the main switchboard and against interwinding faults within the generators. The protective devices are to trip the generator circuit breaker and to automatically de-excite the generator.

In distribution systems with a neutral earthed, phase to earth faults are also to be treated as above.

2.4.2 Faults to earth

Any earth fault in the system is to be indicated by means of a visual and audible alarm. In low impedance or direct earthed systems provision is to be made to automatic disconnect the faulty circuits. In high impedance earthed systems, where outgoing feeders will not be
isolated in case of an earth fault, the insulation of the equipment is to be designed for the phase to phase voltage.

Note: Earthing factor is defined as the ratio between the phase to earth voltage of the health phase and the phase to phase voltage. This factor may vary between \(\frac{1}{\sqrt{3}} \) and 1.

A system is defined effectively earthed (low impedance) when this factor is lower than 0.8. A system is defined non-effectively earthed (high impedance) when this factor is higher than 0.8.

2.4.3 Power transformers

Power transformers are to be provided with overload and short circuit protection. When transformers are connected in parallel, tripping of the protective devices at the primary side has to automatically trip the switch connected at the secondary side.

2.4.4 Voltage transformers for control and instrumentation

Voltage transformers are to be provided with overload and short circuit protection on the secondary side.

2.4.5 Fuses

Fuses are not to be used for overload protection.

2.4.6 Low voltage systems

Lower voltage systems supplied through transformers from high voltage systems are to be protected against overvoltages. This may be achieved by:

i) direct earthing of the lower voltage system.
ii) appropriate neutral voltage limiters.
iii) earthed screen between the primary and secondary windings of transformers.

3. Rotating machinery

3.1 Stator windings of generators

Generator stator windings are to have all phase ends brought out for the installation of the differential protection.

3.2 Temperature detectors

Rotating machinery is to be provided with temperature detectors in their stator windings to actuate a visual and audible alarm in a normally attended position whenever the temperature exceeds the permissible limit.

If embedded temperature detectors are used, means are to be provided to protect the circuit against overvoltage.

3.3 Tests

In addition to the tests normally required for rotating machinery, a high frequency high
Voltage test in accordance with IEC 60034-15:2009 is to be carried out on the individual coils in order to demonstrate a satisfactory withstand level of the inter-turn insulation to steep fronted switching surges.

4. Power Transformers

4.1 General

Dry type transformers have to comply with IEC 60076-11:2018. Liquid cooled transformers have to comply with the applicable Parts of the IEC 60076 Series. Oil immersed transformers are to be provided with the following alarms and protections:

- liquid level (Low) - alarm
- liquid level (Low) - trip or load reduction
- liquid temperature (High) - alarm
- liquid temperature (High) - trip or load reduction
- gas pressure relay (High) - trip

5. Cables

5.1 General

Cables are to be constructed in accordance with the IEC 60092-353:2016 and 60092-354:2020 or other equivalent Standard.

6. Switchgear and Controlgear Assemblies

6.1 General

Switchgear and controlgear assemblies are to be constructed according to the IEC 62271-200:2011 and the following additional requirements.

6.2 Construction

6.2.1 Mechanical construction

Switchgear is to be of metal – enclosed type in accordance with IEC 62271-200:2011 or of the insulation – enclosed type in accordance with the IEC 62271-201:2014.

6.2.2 Locking facilities

Withdrawable circuit breakers and switches are to be provided with mechanical locking facilities in both service and disconnected positions. For maintenance purposes, key locking of withdrawable circuit breakers and switches and fixed disconnectors is to be possible.

Withdrawable circuit breakers are to be located in the service position so that there is no relative motion between fixed and moving portions.

6.2.3 Shutters

The fixed contacts of withdrawable circuit breakers and switches are to be so arranged that in the withdrawable position the live contacts are automatically covered. Shutters are to be clearly marked for incoming and outgoing circuits. This may be achieved with the use of colours or labels.
6.2.4 Earthing and short-circuiting

For maintenance purposes an adequate number of earthing and short-circuiting devices is to be provided to enable circuits to be worked upon with safety.

6.2.5 Internal arc Classification (IAC)

Switchgear and controlgear assemblies shall be internal arc classified (IAC).

Where switchgear and controlgear are accessible by authorized personnel only Accessibility Type A is sufficient (IEC 62271-200:2011; Annex AA; AA 2.2). Accessibility Type B is required if accessible by non-authorised personnel.

Installation and location of the switchgear and controlgear shall correspond with its internal arc classification and classified sides (F, L and R).

6.3 Auxiliary systems

6.3.1 Source and capacity of supply

If electrical energy and/or physical energy is required for the operation of circuit breakers and switches, a stored supply of such energy is to be provided for at least two operations of all the components.

However, the tripping due to overload or short-circuit, and under-voltage is to be independent of any stored electrical energy sources. This does not preclude shunt tripping provided that alarms are activated upon lack of continuity in the release circuits and power supply failures.

6.3.2 Number of external supply sources

When external source of supply is necessary for auxiliary circuits, at least two external sources of supply are to be provided and so arranged that a failure or loss of one source will not cause the loss of more than one generator set and/or set of essential services. Where necessary one source of supply is to be from the emergency source of electrical power for the start up from dead ship condition.

6.4 High voltage test

A power-frequency voltage test is to be carried out on any switchgear and controlgear assemblies. The test procedure and voltages are to be according to the IEC 62271-200:2011 section 7/ routine test.
7. Installation

7.1 Electrical equipment

Where equipment is not contained in an enclosure but a room forms the enclosure of the equipment, the access doors are to be so interlocked that they cannot be opened until the supply is isolated and the equipment earthed down.

At the entrance of the spaces where high-voltage electrical equipment is installed, a suitable marking is to be placed which indicates danger of high-voltage. As regard the high-voltage electrical equipment installed out-side a.m. spaces, the similar marking is to be provided. An adequate, unobstructed working space is to be left in the vicinity of high voltage equipment for preventing potential severe injuries to personnel performing maintenance activities. In addition, the clearance between the switchboard and the ceiling/deckhead above is to meet the requirements of the Internal Arc Classification according to IEC 62271-200:2011 (see 6.2.5).

7.2 Cables

7.2.1 Runs of cables

In accommodation spaces, high voltage cables are to be run in enclosed cable transit systems.

7.2.2 Segregation

High voltage cables are to be segregated from cables operating at different voltage ratings each other; in particular, they are not to be run in the same cable bunch, nor in the same ducts or pipes, or, in the same box. Where high voltage cables of different voltage ratings are installed on the same cable tray, the air clearance between cables is not to be less than the minimum air clearance for the higher voltage side in 2.3.1. However, high voltage cables are not to be installed on the same cable tray for the cables operating at the nominal system voltage of 1 kV and less.

7.2.3 Installation arrangements

High voltage cables, in general, are to be installed on cable trays when they are provided with a continuous metallic sheath or armour which is effectively bonded to earth; otherwise they are to be installed for their entire length in metallic castings effectively bonded to earth.

7.2.4 Terminations

Terminations in all conductors of high voltage cables are to be, as far as practicable, effectively covered with suitable insulating material. In terminal boxes, if conductors are not insulated, phases are to be separated from earth and from each other by substantial barriers of suitable insulating materials. High voltage cables of the radial field type, i.e. having a conductive layer to control the electric field within the insulation, are to have terminations which provide electric stress control.

Terminations are to be of a type compatible with the insulation and jacket material of the cable and are to be provided with means to ground all metallic shielding components (i.e. tapes, wires etc).
7.2.5 Marking

High voltage cables are to be readily identifiable by suitable marking.

7.2.6 Test after installation

Before a new high voltage cable installation, or an addition to an existing installation, is put into service a voltage withstand test is to be satisfactorily carried out on each completed cable and its accessories.

The test is to be carried out after an insulation resistance test.

For cables with rated voltage \((U_0/U)\) above 1.8/3 kV \((U_m=3.6 \text{ kV})\) an a.c. voltage withstand test may be carried out upon advice from high voltage cable manufacturer. One of the following test methods to be used:

a) test for 5 min with the phase-to-phase voltage of the system applied between the conductor and the metallic screen/sheath.

b) test for 24 h with the normal operating voltage of the system.

Alternatively, a d.c. test voltage equal to 4 \(U_0\) may be applied for 15 minutes.

For cables with rated voltage \((U_0/U)\) up to 1.8/3 kV \((U_m=3.6 \text{ kV})\) a d.c. voltage equal to 4 \(U_0\) shall be applied for 15 minutes.

After completion of the test, the conductors are to be connected to earth for a sufficient period in order to remove any trapped electric charge.

An insulation resistance test is then repeated.
Test requirements for Rotating Machines

1. General

All machines are to be tested by the manufacturer.

Manufacturer’s test records are to be provided for machines for essential services, for other machines they are to be available upon request.

All tests are to be carried out according to IEC 60092-301:1980/AMD2:1995.

All machines of 100kW and over, intended for essential services, are to be surveyed by the Society during test and, if appropriate, during manufacturing.

Note: An alternative survey scheme may be agreed by the Society with the manufacturer whereby attendance of the Surveyor will not be required as required above.

Note:

1. Rev.2 of this requirement is to be implemented for rotating machines:

 i) when an application for certification of a rotating machine is dated on or after 1 January 2017; or

 ii) which are installed in new ships for which the date of contract for construction is on or after 1 January 2017.

2. Rev.3 of this requirement is to be implemented for rotating machines:

 i) when an application for certification of a rotating machine is dated on or after 1 January 2022; or

 ii) which are installed in new ships for which the date of contract for construction is on or after 1 January 2022.

3. The “contracted for construction” date means the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. For further details regarding the date of “contract for construction”, refer to TL Procedural Requirement (TL-PR) No. 29.
2. **Shaft Material**

Shaft material for electric propulsion motors and for main engine driven generators where the shaft is part of the propulsion shafting is to be certified by the Society.

Shaft material for other machines is to be in accordance with recognised international or national standard.

3. **Tests**

Type tests are to be carried out on a prototype machine or on the first of a batch of machines, and routine tests carried out on subsequent machines in accordance with Table 1.

Note: Test requirements may differ for shaft generators, special purpose machines and machines of novel construction.
Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Tests</th>
<th>A.C. Generators</th>
<th>Motors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type test<sup>1</sup></td>
<td>Routine test<sup>2</sup></td>
</tr>
<tr>
<td>1.</td>
<td>Examination of the technical documentation, as appropriate and visual inspection</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2.</td>
<td>Insulation resistance measurement</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.</td>
<td>Winding resistance measurement</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4.</td>
<td>Verification of the voltage regulation system</td>
<td>x</td>
<td>x<sup>3)</sup></td>
</tr>
<tr>
<td>5.</td>
<td>Rated load test and temperature rise measurements</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>6.</td>
<td>Overload/overcurrent test</td>
<td>x</td>
<td>x<sup>4)</sup></td>
</tr>
<tr>
<td>7.</td>
<td>Verification of steady short circuit conditions<sup>5)</sup></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Overspeed test</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9.</td>
<td>Dielectric strength test</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>10.</td>
<td>No-load test</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>11.</td>
<td>Verification of degree of protection</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Verification of bearings</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

1) Type tests on prototype machine or tests on at least the first batch of machines.

2) The report of machines routine tested is to contain the manufacturer’s serial number of the machine which has been type tested and the test result.

3) Only functional test of voltage regulator system.

4) Only applicable for machine of essential services rated above 100kW.

5) Verification of steady short circuit condition applies to synchronous generators only.

6) Not applicable for squirrel cage motors.
4. Description of the test

4.1 Examination of the technical documentation, as appropriate and visual inspection

4.1.1 Examination of the technical documentation

Technical documentation of machines rated at 100kW and over is to be available for examination by the Surveyor.

4.1.2 Visual inspection

A visual examination is to be made of the machine to ensure, as far as is practicable, that it complies with technical documentation.

4.2 Insulation resistance measurement

Immediately after the high voltage tests the insulation resistances are to be measured using a direct current insulation tester between:

a) all current carrying parts connected together and earth,

b) all current carrying parts of different polarity or phase, where both ends of each polarity or phase are individually accessible.

The minimum values of test voltages and corresponding insulation resistances are given in Table 2. The insulation resistance is to be measured close to the operating temperature, or an appropriate method of calculation is to be used.

Table 2

<table>
<thead>
<tr>
<th>Related Voltage Un (V)</th>
<th>Minimum Test Voltage (V)</th>
<th>Test Minimum Insulation Resistance (MΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un ≤ 250</td>
<td>2 x Un</td>
<td>1</td>
</tr>
<tr>
<td>250 < Un ≤ 1000</td>
<td>500</td>
<td>1</td>
</tr>
<tr>
<td>1000 < Un ≤ 7200</td>
<td>1000</td>
<td>(Un / 1000) + 1</td>
</tr>
<tr>
<td>7200 < Un ≤ 15000</td>
<td>5000</td>
<td>(Un / 1000) + 1</td>
</tr>
</tbody>
</table>

4.3 Winding resistance measurement

The resistances of the machine windings are to be measured and recorded using an appropriate bridge method or voltage and current method.

4.4 Verification of the voltage regulation system

The alternating current generator, together with its voltage regulation system shall, at all loads from no-load running to full load, be able to keep rated voltage at the rated power factor under steady conditions within ± 2.5%. These limits may be increased to ± 3.5% for emergency sets.

When the generator is driven at rated speed, giving its rated voltage, and is subjected to a sudden change of symmetrical load within the limits of specified current and power factor, the voltage is not to fall below 85% nor exceed 120% of the rated voltage.
The voltage of the generator is then to be restored to within plus or minus 3% of the rated voltage for the main generator sets in not more than 1.5 s. For emergency sets, these values may be increased to plus or minus 4% in not more than 5 s, respectively.

In the absence of precise information concerning the maximum values of the sudden loads, the following conditions may be assumed: 60% of the rated current with a power factor of between 0.4 lagging and zero to be suddenly switched on with the generator running at no load, and then switched off after steady-state conditions have been reached. Subject to Classification Society’s approval, such voltage regulation during transient conditions may be calculated values based on the previous type test records, and need not to be tested during factory testing of a generator.

4.5 Rated load test and temperature rise measurements

The temperature rises are to be measured at the rated output, voltage, frequency and the duty for which the machine is rated and marked in accordance with the testing methods specified in IEC 60034-1:2017, or by means of a combination of other tests.

The limits of temperature rise are those specified in the relevant table of IEC 60034-1:2017 adjusted as necessary for the ambient reference temperatures specified in TL-R M40.

4.6 Overload/overcurrent tests

Overload test is to be carried out as a type test for generators as a proof of overload capability of generators and excitation system, for motors as a proof of momentary excess torque as required in IEC 60034-1:2017. The overload test can be replaced at routine test by the overcurrent test. The over current test shall be the proof of current capability of windings, wires, connections etc. of each machine. The overcurrent test can be done at reduced speed (motors) or at short circuit (generators).

4.7 Verification of steady short-circuit conditions

It is to be verified that under steady-state short-circuit conditions, the generator with its voltage regulating system is capable of maintaining, without sustaining any damage, a current of at least three times the rated current for a duration of at least 2 s or, where precise data is available, for a duration of any time delay which will be fitted in the tripping device for discrimination purposes.

In order to provide sufficient information to the party responsible for determining the discrimination settings in the distribution system where the generator is going to be used, the generator manufacturer shall provide documentation showing the transient behaviour of the short circuit current upon a sudden short-circuit occurring when excited, and running at nominal speed. The influence of the automatic voltage regulator shall be taken into account, and the setting parameters for the voltage regulator shall be noted together with the decrement curve. Such a decrement curve shall be available when the setting of the distribution system’s short-circuit protection is calculated. The decrement curve need not be based on physical testing. The manufacturer’s simulation model for the generator and the voltage regulator may be used where this has been validated through the previous type test on the same model.
4.8 Overspeed test

Machines are to withstand the overspeed test as specified in IEC 60034-1:2017. This test is not applicable for squirrel cage motors.

4.9 Dielectric strength test

Machines are to withstand a dielectric test as specified in IEC 60034-1:2017.

For high voltage machines an impulse test is to be carried out on the coils according to TL-R E11.

4.10 No load test

Machines are to be operated at no load and rated speed whilst being supplied at rated voltage and frequency as a motor or if a generator it is to be driven by a suitable means and excited to give rated terminal voltage.

During the running test, the vibration of the machine and operation of the bearing lubrication system, if appropriate, are to be checked.

4.11 Verification of degree of protection

4.12 Verification of bearings

Upon completion of the above tests, machines which have sleeve bearings are to be opened upon request for examination by the Classification Society Surveyor, to establish that the shaft is correctly seated in the bearing shells.
1 Electrical services required to be operable under fire conditions are as follows:

- Control and power systems to power-operated fire doors and status indication for all fire doors
- Control and power systems to power-operated watertight doors and their status indication
- Emergency fire pump
- Emergency lighting
- Fire and general alarms
- Fire detection systems
- Fire-extinguishing systems and fire-extinguishing media release alarms
- Low location lighting
- Public address systems
- Remote emergency stop/shutdown arrangements for systems which may support the propagation of fire and/or explosion

2 Where cables for services specified in 1 including their power supplies pass through high fire risk areas, and in addition for passenger ships, main vertical fire zones, other than those which they serve, they are to be so arranged that a fire in any of these areas or zones does not affect the operation of the service in any other area or zone. This may be achieved by either of the following measures:

a) Cables being of a fire resistant type complying with IEC 60331-1:2018 for cables of greater than 20 mm overall diameter, otherwise IEC 60331-21:1999+AMD1:2009 or IEC 60331-2:2018 for cables with an overall diameter not exceeding 20 mm, are installed and run continuous to keep the fire integrity within the high fire risk area, see Figure 1.

Notes:

1. Rev.3 of this TL Requirement is to be implemented from 1 January 2016.

2. Rev.4 of this TL Requirement is to be implemented on ships contracted for construction on and after 1 January 2022.

3. The “contracted for construction” date means the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. For further details regarding the date of “contract for construction”, refer to TL Procedural Requirement (TL-PR) No. 29.
At least two-loops/radial distributions run as widely apart as is practicable and so arranged that in the event of damage by fire at least one of the loops/radial distributions remains operational.

Systems that are self monitoring, fail safe or duplicated with cable runs as widely separated as is practicable may be exempted.

The electrical cables to the emergency fire pump are not to pass through the machinery spaces containing the main fire pumps and their source(s) of power and prime mover(s). They are to be of a fire resistant type, in accordance with 2 (a), where they pass through other high fire risk areas.

Notes:

a) For the purpose of E15 application, the definition for “high fire risk areas” is the following:

(i) Machinery spaces as defined by Regulation 3.30 of SOLAS Chapter II-2, as amended by IMO resolutions up to MSC.421(98) (hereinafter the same), except spaces having little or no fire risk as defined by paragraphs (10) of Regulation 9.2.2.3.2.2 of SOLAS Chapter II-2. (Including the interpretations for tables 9.3, 9.4, 9.5, 9.6, 9.7 and 9.8 given in MSC/Circ.1120 as amended by MSC.1/Circ.1436 and MSC.1/Circ.1510)

(ii) Spaces containing fuel treatment equipment and other highly flammable substances

(iii) Galley and Pantries containing cooking appliances

(iv) Laundry containing drying equipment

(v) Spaces as defined by paragraphs (8), (12), and (14) of Regulation 9.2.2.3.2.2 of SOLAS Chapter II-2 for ships carrying more than 36 passengers

b) Fire resistant type cables should be easily distinguishable.

c) For special cables, requirements in the following standards may be used:

IEC 60331-23:1999: Procedures and requirements – Electric data cables
IEC 60331-25:1999: Procedures and requirements – Optical fibre cables
Figure 1
Cable trays/protective casings made of plastics materials

1. General requirement

Cable trays/protective casings made of plastics materials are to be type tested 1).

Note: "Plastics" means both thermoplastic and thermosetting plastic materials with or without reinforcement, such as PVC and fibre reinforced plastics - FRP. "Protective casing" means a closed cover in the form of a pipe or other closed ducts of non-circular shape.

2. Installation Requirements

2.1. Cable trays/protective casings made of plastics materials are to be supplemented by metallic fixing and straps such that in the event of a fire they, and the cables affixed, are prevented from falling and causing an injury to personnel and/or an obstruction to any escape route.

Note: When plastics cable trays/protective casings are used on open deck, they are additionally to be protected against UV light.

2.2. The load on the cable trays/protective casings is to be within the Safe Working Load (SWL). The support spacing is not to be greater than the Manufacturer’s recommendation nor in excess of spacing at the SWL test. In general the spacing is not to exceed 2 meters.

Note: The selection and spacing of cable tray/protective casing supports are to take into account:
- cable trays/protective casings' dimensions;
- mechanical and physical properties of their material;
- mass of cable trays/protective casings;
- loads due weight of cables, external forces, thrust forces and vibrations;
- maximum accelerations to which the system may be subjected;
- combination of loads .

2.3. The sum of the cables' total cross-sectional area, based on the cables' external diameter, is not to exceed 40% of the protective casing's internal cross-sectional area. This does not apply to a single cable in a protective casing.

Note: Cable trays/protective casings made of plastic materials are to be type tested in accordance with the Type Approval Procedure applied by TL. For guidance on testing, refer to TL- G 73.
Harmonic Distortion for Ship Electrical Distribution System including Harmonic Filters

1. **Scope**

This requirement apply to ships where harmonic filters are installed on main busbars of electrical distribution system, other than those installed for single application frequency drives such as pump motors.

2. **General**

The total harmonic distortion (THD) of electrical distribution systems is not to exceed 8%.

This limit may be exceeded where all installed equipment and systems have been designed for a higher specified limit and this relaxation on limits is documented (harmonic distortion calculation report) and made available on board as a reference for the surveyor at each periodical survey.

3. **Monitoring of harmonic distortion levels for a ship including harmonic filters**

3.1 The ships are to be fitted with facilities to continuously monitor the levels of harmonic distortion experienced on the main busbar as well as alerting the crew should the level of harmonic distortion exceed the acceptable limits. Where the engine room is provided with automation systems, this reading should be logged electronically, otherwise it is to be recorded in the engine log book for future inspection by the surveyor.

Note:

1. This requirement, except for Section 3.2, is implemented:
 i. for ships contracted for construction on or after 1 July 2020 or
 ii. the retrofit of harmonic filters is dated on or after 1 July 2020.

2. Section 3.2 is implemented for ships contracted for construction before 1 July 2017, at any scheduled Machinery periodical survey having a due date on or after 1 July 2017.

3. The “contracted for construction” date means the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. For further details regarding the date of “contract for construction”, refer to TL- PR 29.
3.2 As a minimum, harmonic distortion levels of main busbar on board such existing ships are to be measured annually under seagoing conditions as close to the periodical machinery survey as possible so as to give a clear representation of the condition of the entire plant to the surveyor. Harmonic distortion readings are to be carried out when the greatest amount of distortion is indicated by the measuring equipment. An entry showing which equipment was running and/or filters in service is to be recorded in the log so this can be replicated for the next periodical survey. Harmonic distortion levels are also to be measured following any modification to the ship’s electrical distribution system or associated consumers by suitably trained ship’s personnel or from a qualified outside source.

Records of all the above measurements are to be made available to the surveyor at each periodical survey.

4. Mitigation of the effects of harmonic filter failure on a ship’s operation

Where the electrical distribution system on board a ship includes harmonic filters the system integrator of the distribution system is to show, by calculation, the effect of a failure of a harmonic filter on the level of harmonic distortion experienced.

The system integrator of the distribution system is to provide the ship owner with guidance documenting permitted modes of operation of the electrical distribution system while maintaining harmonic distortion levels within acceptable limits during normal operation as well as following the failure of any combination of harmonic filters.

The calculation results and validity of the guidance provided are to be verified by the surveyor during sea trials.

5. Protection arrangements for harmonic filters

Arrangements are to be provided to alert the crew in the event of activation of the protection of a harmonic filter circuit.

A harmonic filter should be arranged as a three phase unit with individual protection of each phase. The activation of the protection arrangement in a single phase shall result in automatic disconnection of the complete filter. Additionally, there shall be installed a current unbalance detection system independent of the overcurrent protection alerting the crew in case of current unbalance.

Consideration is to be given to additional protection for the individual capacitor element as e.g. relief valve or overpressure disconnector in order to protect against damage from rupturing. This consideration should take into account the type of capacitors used.
1. **Failure detection**

1.1 The most probable failures that may cause reduced or erroneous system performance shall be automatically detected and at least the following failure scenarios shall be considered:

(a) Power supply failure

(b) Earth fault on AC and DC circuits

(c) Loop failures in closed loop systems, both command and feedback loops (normally short circuit, broken connections and earth faults)

(d) Data communication errors

(e) Programmable system failures (Hardware and software failures)

(f) Hydraulic locking

(g) Deviation between rudder order and feedback*

* Deviation alarm shall be initiated if the rudder’s actual position does not reach the set point within acceptable time limits for the closed loop control systems (e.g. follow-up control and autopilot). Deviation alarm may be caused by mechanical, hydraulic or electrical failures.

1.2 All failures detected shall initiate audible and individual visual alarm on the navigation bridge.

2. **System response upon failure**

2.1 The failures (as defined but not limited to those in 1.1) likely to cause uncontrolled movements of rudder are to be clearly identified. In the event of detection of such failure, the rudder should stop in the current position. Alternatively the rudder can be set to return to the midship/neutral position in the event of a failure. This is subject to the discretion of TL.

Note:

1. This requirement is implemented on ships contracted for construction (as defined in TL- PR 29) on or after 1 July 2017.

2. The “contracted for construction” date means the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. For further details regarding the date of “contract for construction”, refer to TL- PR 29.