Latest editions of TL Rules incorporate all rule changes. The latest rule revisions of a published rule are shown with a vertical line. Changes after the publication of the rule are written in red colour.

Please note that within this document added items are written in red and for deleted items strikethrough is applied. After the publication of relevant rule, those revisions are to be indicated with a vertical line. Following Rule Changes presented in English are also implemented into Turkish Version of Rules.

RULE CHANGE NOTICES

<table>
<thead>
<tr>
<th>Classification and Surveys</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Item</td>
</tr>
<tr>
<td>01</td>
<td>Section 2, A.2.2.4</td>
</tr>
<tr>
<td>02</td>
<td>Section 2, B.</td>
</tr>
<tr>
<td>03</td>
<td>Section 2, B.1.3, B.3.2.1.2, B.3.2.3, B.3.2.4, B.3.3, B.3.3.2, B.3.4.5</td>
</tr>
<tr>
<td>04</td>
<td>Section 2, D.2.5.1</td>
</tr>
<tr>
<td>05</td>
<td>Section 2, D.2.5.3, Table 2.4</td>
</tr>
<tr>
<td>06</td>
<td>Section 2, D.2.5.4</td>
</tr>
<tr>
<td>07</td>
<td>Section 2, D.2.5.6, Table 2.3</td>
</tr>
<tr>
<td>08</td>
<td>Section 3, A.4.3.2</td>
</tr>
<tr>
<td>09</td>
<td>Section 3, A.4.7.7, A.4.8.1, A.4.14</td>
</tr>
<tr>
<td>10</td>
<td>Section 3, A.5.1</td>
</tr>
<tr>
<td>11</td>
<td>Section 3, A.5.6</td>
</tr>
<tr>
<td>12</td>
<td>Section 3, A.7</td>
</tr>
<tr>
<td>13</td>
<td>Section 3, C.2.1</td>
</tr>
<tr>
<td>14</td>
<td>Section 3, K.15</td>
</tr>
</tbody>
</table>
Chapter 1 - Hull

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 2, B.1.2</td>
</tr>
<tr>
<td>02</td>
<td>Section 3, Table 3.35</td>
</tr>
<tr>
<td>03</td>
<td>Section 6, G.1, Figure 6.13</td>
</tr>
<tr>
<td>04</td>
<td>Section 7, B.6.1</td>
</tr>
<tr>
<td>05</td>
<td>Section 8, B.2.4.6</td>
</tr>
<tr>
<td>06</td>
<td>Section 8, B.5</td>
</tr>
<tr>
<td>07</td>
<td>Section 12, A.2</td>
</tr>
<tr>
<td>08</td>
<td>Section 14, D.11</td>
</tr>
<tr>
<td>09</td>
<td>Section 16, G</td>
</tr>
<tr>
<td>10</td>
<td>Section 16, G.4.9</td>
</tr>
<tr>
<td>11</td>
<td>Section 17, G.1.4, G.2.4</td>
</tr>
<tr>
<td>12</td>
<td>Section 20, B.3.1.1</td>
</tr>
<tr>
<td>13</td>
<td>Section 21, B.12.1.5</td>
</tr>
<tr>
<td>14</td>
<td>Section 21, B.12.9</td>
</tr>
<tr>
<td>15</td>
<td>Section 21, B.17.6.4</td>
</tr>
<tr>
<td>16</td>
<td>Section 21, C.8.1.5</td>
</tr>
<tr>
<td>17</td>
<td>Section 21, C.8.7</td>
</tr>
<tr>
<td>18</td>
<td>Section 26, B.2.8</td>
</tr>
<tr>
<td>19</td>
<td>Section 26, G.1.3</td>
</tr>
<tr>
<td>20</td>
<td>Section 27, D.1</td>
</tr>
<tr>
<td>21</td>
<td>Section 27, E.1</td>
</tr>
<tr>
<td>22</td>
<td>Section 28, D.1</td>
</tr>
</tbody>
</table>

Chapter 2 - Material

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 2, H.11.1.1, H.12.1.2, H.12.6.2, H.12.7.1 and Table 2.6</td>
</tr>
<tr>
<td>02</td>
<td>Section 5, G.6.3</td>
</tr>
<tr>
<td>03</td>
<td>Section 6, Table 6.28</td>
</tr>
</tbody>
</table>
Chapter 3 - Welding

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 3, Preliminary Remarks, C.1.1</td>
</tr>
<tr>
<td>02</td>
<td>Section 5, General</td>
</tr>
<tr>
<td>03</td>
<td>Section 5, A.4.1</td>
</tr>
<tr>
<td>04</td>
<td>Section 7, B.1.1</td>
</tr>
<tr>
<td>05</td>
<td>Section 10, L.1.1, L.2.3, L.2.4, L.2.5, L.4.4, L.5.1 and M.1.3</td>
</tr>
<tr>
<td>06</td>
<td>Section 11, General</td>
</tr>
<tr>
<td>07</td>
<td>Section 12, F.4.3.3.6, G.10.1.1</td>
</tr>
<tr>
<td>08</td>
<td>Section 16, F.5.3</td>
</tr>
</tbody>
</table>

Chapter 4 - Machinery

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 2, A.2.1</td>
</tr>
<tr>
<td>02</td>
<td>Section 2, K.1, K.2, K.3</td>
</tr>
<tr>
<td>03</td>
<td>Section 5, C.3.4</td>
</tr>
<tr>
<td>04</td>
<td>Section 5, E.2</td>
</tr>
<tr>
<td>05</td>
<td>Section 7, C.</td>
</tr>
<tr>
<td>06</td>
<td>Section 7, Table 7.3</td>
</tr>
<tr>
<td>07</td>
<td>Section 9, A.1.3.1</td>
</tr>
<tr>
<td>08</td>
<td>Section 16, C.2.7</td>
</tr>
<tr>
<td>09</td>
<td>Section 16, T.1.1</td>
</tr>
<tr>
<td>10</td>
<td>Section 18, E.1.4.3</td>
</tr>
<tr>
<td>11</td>
<td>Section 18, Q., Table 18.11</td>
</tr>
</tbody>
</table>

Chapter 4-1 - Automation

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>General</td>
</tr>
<tr>
<td>02</td>
<td>Section 4, A.2</td>
</tr>
<tr>
<td>03</td>
<td>Section 4, A.3</td>
</tr>
<tr>
<td>04</td>
<td>Section 4, C.3</td>
</tr>
<tr>
<td>05</td>
<td>Section 4, D.2</td>
</tr>
<tr>
<td>06</td>
<td>Section 8, Table 8.1, 8.2</td>
</tr>
</tbody>
</table>
Chapter 5 – Electrical Installation

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 20, F.1.4</td>
</tr>
</tbody>
</table>

Chapter 7 – High Speed Crafts

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 1, 1.4.46</td>
</tr>
<tr>
<td>02</td>
<td>Section 2, 2.2.7.7</td>
</tr>
<tr>
<td>03</td>
<td>Section 3, K.3.1.8.2</td>
</tr>
<tr>
<td>04</td>
<td>Section 3, K.3.6.1.3.1.1</td>
</tr>
<tr>
<td>05</td>
<td>Section 3, Figure 3.6.19</td>
</tr>
</tbody>
</table>

Kısım 9 – Yatların Yapımı ve Klaslanmasına İlişkin Kurallar

<table>
<thead>
<tr>
<th>No</th>
<th>Madde</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Bölüm 1, A.4.3.4</td>
</tr>
<tr>
<td>02</td>
<td>Bölüm 1, B.2.1.3</td>
</tr>
<tr>
<td>03</td>
<td>Bölüm 1, B.3.1</td>
</tr>
<tr>
<td>04</td>
<td>Bölüm 1, B.3.3</td>
</tr>
<tr>
<td>05</td>
<td>Bölüm 2, A.5.7.3</td>
</tr>
<tr>
<td>06</td>
<td>Bölüm 2, A.4.2</td>
</tr>
<tr>
<td>07</td>
<td>Bölüm 2, A.5.4.1, A.5.4.3.3, A.5.5.1, 5.5.2, 5.5.3</td>
</tr>
<tr>
<td>08</td>
<td>Bölüm 3, D.5.3</td>
</tr>
<tr>
<td>09</td>
<td>Bölüm 3, D.7.2</td>
</tr>
<tr>
<td>10</td>
<td>Bölüm 3, E.4.4</td>
</tr>
<tr>
<td>11</td>
<td>Bölüm 3, Tablo 3.12 (a)</td>
</tr>
<tr>
<td>12</td>
<td>Bölüm 4, C.2.6.1</td>
</tr>
<tr>
<td>13</td>
<td>Bölüm 5, C.2.2.3</td>
</tr>
<tr>
<td>14</td>
<td>Bölüm 5, L</td>
</tr>
<tr>
<td>15</td>
<td>Bölüm 7, E.8.5.1</td>
</tr>
<tr>
<td>16</td>
<td>Bölüm 7, E.2.4</td>
</tr>
<tr>
<td>17</td>
<td>Bölüm 7, A.1, B.4, C.1.1.3, D.1.1.1, E.8.1.1, F.1.1.1</td>
</tr>
<tr>
<td>No</td>
<td>Madde</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>18</td>
<td>Bölüm 7, Tablo 7.9</td>
</tr>
<tr>
<td>19</td>
<td>Bölüm 7 Ek, Tablo 7.30</td>
</tr>
<tr>
<td>20</td>
<td>Bölüm 9, D.1.1</td>
</tr>
<tr>
<td>21</td>
<td>Bölüm 10, A.5, A.6, A.8</td>
</tr>
<tr>
<td>22</td>
<td>Bölüm 10, Ek 2</td>
</tr>
<tr>
<td>23</td>
<td>Bölüm 12, Ek 1</td>
</tr>
</tbody>
</table>

Kısım 19 – İç Su / Kıyı Gemileri

<table>
<thead>
<tr>
<th>No</th>
<th>Madde</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Bölüm 35, B.1</td>
</tr>
</tbody>
</table>

Chapter 25 - Machinery Condition Monitoring

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Annex B, Table B.1</td>
</tr>
</tbody>
</table>

Kısım 27 - Boyları 24 m. den Küçük Ahşap Yolcu Teknelerinin Yapımı ve Klaslanmasına İlişkin Kurallar

<table>
<thead>
<tr>
<th>No</th>
<th>Madde</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Bölüm 1, A.2.2</td>
</tr>
<tr>
<td>02</td>
<td>Bölüm 2, C.5.3</td>
</tr>
<tr>
<td>03</td>
<td>Bölüm 6, C.2.2.2</td>
</tr>
</tbody>
</table>

Chapter 53 - Submersibles

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Annex C, Table C.1</td>
</tr>
<tr>
<td>02</td>
<td>Annex E, B.3.3, D.2.1</td>
</tr>
</tbody>
</table>

Chapter 101 – Naval Ship Technology, Classification and Surveys

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 2, B.4</td>
</tr>
</tbody>
</table>

Chapter 102 – Naval Ship Technology, Hull Structures and Ship Equipment

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 1, A.2</td>
</tr>
<tr>
<td>02</td>
<td>Section 2, C.2.3.1.4, Figure 2.2</td>
</tr>
<tr>
<td>03</td>
<td>Section 3, F.4.3</td>
</tr>
<tr>
<td>No</td>
<td>Item</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>04</td>
<td>Section 4, General</td>
</tr>
<tr>
<td>05</td>
<td>Section 5, General</td>
</tr>
<tr>
<td>06</td>
<td>Section 7, General</td>
</tr>
<tr>
<td>07</td>
<td>Section 19, E.2.2</td>
</tr>
</tbody>
</table>

Chapter 104 – Naval Ship Technology, Propulsion Plants

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 1, A.8</td>
</tr>
</tbody>
</table>

Chapter 105 – Naval Ship Technology, Electrical Installations

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 1, A.4</td>
</tr>
<tr>
<td>02</td>
<td>Section 2, E.</td>
</tr>
</tbody>
</table>

Chapter 106 – Naval Ship Technology, Automation

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 1, A.4</td>
</tr>
</tbody>
</table>

Chapter 107 – Naval Ship Technology, Ship Operation Installations and Auxiliary Systems

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Section 1, A.5</td>
</tr>
<tr>
<td>02</td>
<td>Section 7, C.1</td>
</tr>
<tr>
<td>03</td>
<td>Section 8, Table 8.3</td>
</tr>
<tr>
<td>04</td>
<td>Section 8, G.5</td>
</tr>
<tr>
<td>05</td>
<td>Section 11, General</td>
</tr>
</tbody>
</table>

Ek Kurallar - Sevk Sisteminin Temellere Yerleştirilmesi İçin Kurallar

<table>
<thead>
<tr>
<th>No</th>
<th>Madde</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Genel</td>
</tr>
</tbody>
</table>

Additional Rules - Type Testing Procedure For Crankcase Explosion Relief Valves

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>General</td>
</tr>
</tbody>
</table>
Additional Rules - Implementation MARPOL Annex VI and NOx Technical Code

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>UI MPC12</td>
</tr>
<tr>
<td>02</td>
<td>UI MPC14</td>
</tr>
<tr>
<td>03</td>
<td>UI MPC20</td>
</tr>
<tr>
<td>04</td>
<td>UI MPC29</td>
</tr>
</tbody>
</table>
CLASSIFICATION AND SURVEYS

01. Section 2 – Classification
Revision Date: August 2014
Entry Into Force Date: January 2015
According to IACS PR 31 Rev.1, item A.2.2.4 has been revised as follows:

2.2.4 In statutory matters, when authorized by the flag state concerned and acting on its behalf, the Society applies the IACS Unified Interpretations (UIs) applicable to a vessel, its machinery and equipment, in accordance with the implementation dates and provisions stated in the UI, unless the flag state provides a different interpretation with written instruction to apply or decides otherwise.

02. Section 2 – Classification
Revision Date: September 2014
Entry Into Force Date: January 2015
Title of item B. and B.2 have been revised as follows:

B. Assignment and Transfer of Class
...

2. Assignment of Class to a New Ship
...

03. Section 2 – Classification
Revision Date: November 2014
Entry Into Force Date: January 2015
According to IACS PR 1D, items B.1.3, B.3.2.1.2, B.3.2.3, B.3.2.4, B.3.3, B.3.3.2, B.3.4.5 have been revised as follows:

1.3 It is to be noted that in cases of transfer of class from non IACS member class society specific requirements, different from stated in section B., are to be applied. In such cases Türk Loydu is to be contacted in order to obtain specific requirements developed for each particular case or non-classed existing vessel, the Owner is to be notified in writing of:

- The relevant surveys specified in 3.3.2.1 that are required to be satisfactorily completed for entry into class;
- The plan submittal and appraisal requirements for classification by the TL as a prerequisite to obtaining an Interim or Full Term Certificate of Class;
The requirement that an Interim or Full Term Certificate of Class can be issued only after the TL has satisfactorily completed all required plan appraisal and surveys.

3.2.1.2 ...

- Stern Frame, if the vessel is transferred from a non-IACS society or is non-classed

...

3.2.3 In case of class transfer from a non-IACS Society to Türk Loydu, additional drawings and documentation are needed in addition to drawings stated in 3.2.1 or non-classed vessel, the submission of plans, documents or alternative technical information are required to verify that the vessel complies with the TL's Rules.

In cases where the vessel has been previously classed by TL or an IACS Member, the submission of plans may be specially considered subject to confirmation of no alteration/modification to the vessel.

Where plan appraisal issues remain outstanding, TL may impose a Recommendation for a limited time period in accordance with IACS PR 35.

If it proves not practicable (after having made a good faith effort to obtain the information) to acquire certain plans as listed in 3.2.1, equivalent/alternative technical data must be provided prior to TL issuing the Full Term Class Certificate.

3.2.4 TL may also request additional drawings and documentation in addition to drawings stated in 3.2.1.

3.3 Note:

Class entry surveys may be, but are not required to be, credited as periodical surveys for maintenance of classification. Recommendations due for compliance at a specified periodical survey for maintenance of classification need not be carried out/complied with at a class entry survey unless the class entry survey is credited as the specified periodical survey for maintenance of classification or the recommendation is overdue.

For ships classified in the meantime by a non-IACS Classification Society, class renewal survey is required.

3.3.2 For non-IACS classed or non-classed vessels, the class entry survey is to be held according to following:

3.3.2.1 As the minimum extent based on the age and the type of the vessel as follows:

- Class renewal survey of Hull and Machinery including thickness measurements;
- Dry docking Survey
- Propeller Shaft Survey(s)
- Boiler Survey(s) and Pressure vessel survey(s)
3.3.2.2 TL may request further examinations, tests and measurements, including but not limited to material testing, non-destructive testing, hydraulic and hydrostatic tests and sea trial.

3.3.2.3 Where the vessel has, during any portion of the five years prior to the request for classification being received, been previously classed by:

- Türk Loydu, or
- an IACS member at the time it classed the vessel,

then survey requirements may be specially considered but are not to be less than those required by 3.3.1.

3.4.5 For non-IACS Classed and non-classed vessel, the owner is to make a written request to TL to obtain an Interim Certificate of Class.

An Interim Certificate of Class, or other documents enabling for non-IACS Classed or non-classed vessel to trade under TL’s classification is issued:

- when all required surveys have been completed;
- when the appraisal of the plans listed in 3.2.1, has been carried out (Where issues remain outstanding, TL may impose a Recommendation for a limited time period in accordance with Procedural Requirement IACS PR 35);
- when the opportunity to the Flag Administration is given to provide any further instruction within three (3) working days (In compliance with the requirements of Art. 10.5 of the Regulation (EC) No 391/2009 as amended).

04. Section 2 – Classification
Revision Date: December 2014
Entry Into Force Date: January 2015

Item D.2.5.1 has been revised as follows:

A passenger ship is a ship which carries more than 12 passengers and ships complying with the Construction Rules for the carriage and/or accommodation of passengers and with the applicable requirements of the Chapters II-1 and II-2 of the SOLAS Convention. Exemptions from these requirements may be granted only within the framework of options given therein and are subject of approval by the competent flag state.

05. Section 2 – Classification
Revision Date: December 2014
Entry Into Force Date: January 2015

Item D.2.5.3 and Table 2.4 have been revised as follows:

2.5.3 Passenger-ships-class A/B/C/D, Ro-Ro passenger-ship-class A/B/C/D - Domestic Service
For passenger ships intended to operate within domestic waters and complying with the requirements of EU Directive 2009/45/EC dated 06.05.2009 are to be given RO-RO PASSENGER SHIP or PASSENGER SHIP, CLASS A/B/C/D.

Ships constructed according to directives published for the ships operating within only domestic waters of relevant flag state or having exemptions to operate in domestic service granted by flag state are to be given ...Domestic Service notation (e.g. TR-Domestic Service). Parts of the directive, which are out of classification scope, are to be specified in class certificates.

Table 2.4 Summary of optional class notations

| ...-Domestic Service | Additional class notation indicating service range for the ships constructed according to directives published for the ships operating within only domestic waters of relevant flag state or having exemptions to operate in domestic service granted by flag state. (e.g. TR-Domestic service). Parts of the directive, which are out of classification scope, are to be specified in class certificates. |

06. Section 2 – Classification

Revision Date: December 2014
Entry Into Force Date: January 2015

Item D.2.5.4 has been revised as follows:

Ships constructed of non-steel materials according to the current rules related with accommodation and carriage of more than 12 passengers safely are to be given (WOODEN, FRP, etc.) PASSENGER VESSEL. ...

07. Section 2 – Classification

Revision Date: August 2014
Entry Into Force Date: January 2015

Three new notations have been added to item D.2.5.6 and Table 2.3 as follows:

PATROL BOAT
PATROL
CREW BOAT
08. Section 3 - Surveys
Revision Date: September 2014
Entry Into Force Date: January 2015

According to IACS UR Z7 (Rev21), UR Z7.1 (Rev10), UR Z7.2 (Rev5), UR Z10.1 (Rev21), UR Z10.2 (Rev31), UR Z10.3 (Rev16), UR Z10.4 (Rev12), UR Z10.5 (Rev14), item A.4.3.2 has been revised as follows:

4.3.2 The survey is normally being carried out within a time window of 3 months before the due date.

For surveys completed within 3 months before the expiry date of the class renewal survey, the next period of class will start from the expiry date of the class renewal survey. For surveys completed more than 3 months before the expiry date of the class renewal survey, the period of class will start from the survey completion date. In cases where the vessel has been laid up or has been out of service for a considerable period because of a major repair or modification and the owner elects to only carry out the overdue surveys, the next period of class will start from the expiry date of the class renewal survey. If the owner elects to carry out the next due class renewal survey, the period of class will start from the survey completion date.

09. Section 3 – Surveys
Revision Date: July 2014
Entry Into Force Date: January 2015

According to IACS Recommendation 133, items A.4.7.7 and A.4.14 have been added and item A.4.8.1 has been revised as follows:

4.7.7 Bottom surveys at an "Extended Dry-docking Scheme" can be credited as in-water survey during Intermediate and Class Renewal surveys in terms of the 7.5 years interval, see A 4.14.

4.8.1 For ships assigned the class notation IWS, an in-water survey performed with the assistance of an approved diving firm may be recognized as a substitute for every second periodical dry docking survey. Exemption from above is applied for ships enrolled in “Extended Dry-docking Scheme”, see A 4.14.

4.14 Extended Dry-docking Scheme

Subject to provisions outlined below, IACS Recommendation 133, and any additional specific Flag Administration requirements, the dry-docking interval can be extended with the approval of the ship’s Flag Administration to 7.5 years.

At the 7.5 years interval it is possible to perform the first two forthcoming bottom surveys as underwater survey in the scope of an in-water survey provided that these should be carried out during the renewal period of five years and the intervals between any two inspections shall not exceed 36 months (see also 4.7). The third bottom survey at 7.5 years has to be performed in dry-dock. No extensions are to be granted for the dry-docking required at the end of each extended dry-dock interval.

The dry-docking scheme will operate based upon the ship’s age when entering the scheme. The Extended Dry-docking Scheme may be implemented at any time until a ship reaches 10 years of age.
The Extended Dry-docking Scheme generally applies to container ships excluding the following ships and ship types:

- Passenger Ships;
- Ships subject to the Enhanced Survey Program (ESP);
- Ships subject to the Hull Survey Requirements listed in IACS UR Z 7.1 (See also A 1.22);
- Ships fitted with propulsion thrusters;
- Ships where the propeller connection to the shaft is by means of a keyed taper;
- High Speed Craft (HSC).

Prior to acceptance into “Extended Dry-docking Scheme”, following necessary requirements are to be complied:

- Class Notation IWS or equivalent, hull, rudder and shafting systems to be inspectable during in-water survey;
- Class Notation CM-PS or equivalent, shaft bearing and sealing system of approved design and regular monitoring procedures implemented;
- Planned Maintenance System Machinery according to A.4.5.
- Hull Maintenance Scheme according to HP class notation in accordance with ISM requirements.

Upon the Owner’s request, the extended interval for each ship will be considered on a case by case basis by TL. The Extended Dry-docking Scheme is in any case subject to approval by the relevant Flag State.

All ships in an Extended Dry-docking Scheme shall be disenrolled once the ship reaches 15 years of age. The Extended Dry-docking Scheme will be terminated in cases of change of the ship’s owner, management or Flag Administration.

TL may disenroll a ship from an Extended Dry-docking Scheme at any time should it be found that the conditions for maintaining this Extended Dry-docking Scheme are not fulfilled anymore.

Once the conditions for the scheme are no longer present, the ship will return to the normal docking interval and any due dock survey shall be carried out by the due date.

10. Section 3 – Surveys

Revision Date: September 2014

Entry Into Force Date: January 2015

According to IACS UR Z7 (Rev21), UR Z7.1 (Rev10), UR Z7.2 (Rev5), UR Z10.1 (Rev21), UR Z10.2 (Rev31), UR Z10.3 (Rev16), UR Z10.4 (Rev12), UR Z10.5 (Rev14) and Recommendation 134, Item A.5.1 has been revised as follows:

5.1 Before Türk Loydu starts work, the Client shall inform Türk Loydu about relevant safety issues and take all necessary safety-related measures (including boat transfers in compliance with IACS Rec. 134) to ensure a safe work environment in accordance with the IACS PR37 for the persons carrying out the work for Türk Loydu and shall comply with all legal and other safety regulations.
According to IACS UR Z7 (Rev21), UR Z7.1 (Rev10), UR Z7.2 (Rev5), UR Z10.1 (Rev21), UR Z10.2 (Rev31), UR Z10.3 (Rev16), UR Z10.4 (Rev12), UR Z10.5 (Rev14), item A.5.6 has been deleted and following items have been renumbered:

5.6 A communication system is to be arranged between the survey party in the cargo hold, tank or other space being examined and the responsible officer on the deck or navigation bridge.

A new item A.7 has been added as follows:

7. Work at Height

7.1 Work at height means work in any place where, if precautions are not taken, a person could fall and be injured. This includes working at or below ground level if a fall is still possible such as a fall from an edge or through an opening. This encompasses working:

- from a ladder or on scaffolding, and other means of access;
- alongside an open hatch or other opening in a ship’s structure;
- in close proximity to, or supported from, a ship’s side;
- in or entering or exiting spaces, such as ballast tanks, cargo holds, deep tanks, etc.;
- on or from a permanent stairway, gangway, accommodation ladder or companionway in or on a ship;
- in or on structures under fabrication, such as subassemblies, hull sections or hull blocks.

7.2 Responsibilities

7.2.1 Responsibility for the provision of the means of access, working platforms and related equipment lies with the shipyard / ship owner / crew / repairer / industrial unit or other party as applicable. A Responsible Person means an authorized representative of the ship owner/manager or facility’s management who is authorized to permit work at height. All surveyors who are expected to work at height should be trained in safety requirements for such activities according to Classification Society’s internal procedures and IACS Recommendation No.136 “Guidelines for Working at Height” may be taken as a reference.

7.2.2 Safety measures, including the following, should be taken by a responsible person prior to survey / inspection to the satisfaction of the attending surveyor:

- The equipment’s range of use should be agreed with the operator before using the equipment;
- Permissible load and reach limitations should not be exceeded.
Class rules normally require that Owners’ / site managers’ ‘Responsible Person(s)’ are responsible for providing means of access which are suitable and safe for the work to be carried out. The equipment, where applicable, should be operated/erected by qualified personnel. Evidence should be provided that the equipment has been properly maintained and inspected before each use; that formal inspections have been held annually, as a minimum; that re-inspections have been completed if any modifications from the original configuration have been carried out.

7.2.3 It should be demonstrated by the Responsible Person that the equipment provided has been inspected, maintained and operated by trained and qualified persons. These should be demonstrated to the surveyors by the production of applicable documents, prior to the equipment being used.

13. Section 3 – Surveys
Revision Date: December 2014
Entry Into Force Date: January 2015
Item C.2.1 has been revised as follows:
Survey report file consisting of reports for structural surveys, thickness measurement reports, and additionally for ESP ships executive hull summary and survey programme.

14. Section 3 – Surveys
Revision Date: August 2014
Entry Into Force Date: January 2015
Item K.15 has been added as follows:

15. Special Crafts
For additional survey requirements see Preliminary Rules for Special Crafts, Section 2, B.

PART A – CHAPTER 1 – HULL

01. Section 2 – Habitability
Revision Date: July 2014
Entry Into Force Date: January 2015
Item B.1.2 has been revised as follows:

1.2 Vibration standards for the main and auxiliary ship machinery and equipment are specified in Section 19. A and TL Chapter 4, Machinery, Section 1, D.4, for main shafting in Section 5.D and for torsional vibration in Section 6. Similarly, the vibration standards for ship’s electronic devices are given in Section 1, E.2 Section 1, F.1.
02. Section 3 – Design Principles
Revision Date: November 2014
Entry Into Force Date: January 2015
Table 3.35 Note (6) has been revised as follows:

(6) Where water tightness of watertight door has not been confirmed by prototype test, testing by filling watertight spaces with water is to be carried out. See SOLAS regulation II-1/16.2 and MSC/Circ.1176, MSC.1/Circular.1464.

03. Section 6 - Longitudinal Strength
Revision Date: July 2014
Entry Into Force Date: January 2015
According to IACS UR S17 Rev.9, item G.1 has been revised and a new figure as 6.13 has been added as follows:

G. Longitudinal Strength of Hull Girder in Flooded Condition for Non-CSR Bulk Carriers

1. General

Requirements of G are to be applied to non-CSR bulk carriers of 150 m in length and upwards, intending to carry solid bulk cargoes having a density of 1.0 t/m3 or above, and with,

- Single side skin construction, or

- Double side skin construction in which any part of longitudinal bulkhead is located within B/5 or 11.5 m, whichever is less, inboard from the ship’s side at right angle to the centreline at the assigned summer load line.

Such ships are to have their hull girder strength checked for specified flooded conditions, in each of the cargo and ballast loading conditions defined in Section 26 B.2 (Standard Loading Conditions), Section 6 H.3.1.1 (Partially filled ballast tanks in ballast loading Conditions), H.3.1.2 (Partially filled ballast tanks in combination with cargo loading conditions) and in every other condition considered in the intact longitudinal strength calculations, including those according to Section 6 and Section 27 B.10, except that harbour conditions, docking condition afloat, loading and unloading transitory conditions in port and loading conditions encountered during ballast water exchange need not be considered.
These requirements do not apply to CSR Bulk Carriers.

Figure 6.13 Propeller Immersion

04. Section 7 – Plating
Revision Date: June 2014
Entry Into Force Date: January 2015
According to IACS UR S13 Rev.2 Corr.1, a new note has been added to item B.6.1 as follows:

Note: Excluding CSR Oil Tankers, for every oil tanker subject to Regulation 18 of MARPOL 73/78 Annex I, scantlings of the strengthening of bottom forward is to be based on the draft obtained by using segregated ballast tanks only.

05. Section 8 – Supporting Structures
Revision Date: June 2014
Entry Into Force Date: January 2015
According to IACS UR S13 Rev.2 Corr.1, a new note has been added to item B.2.4.6 as follows:

Note: Excluding CSR Oil Tankers, for every oil tanker subject to Regulation 18 of MARPOL 73/78 Annex I, scantlings of the strengthening of bottom forward is to be based on the draft obtained by using segregated ballast tanks only.

06. Section 8 – Supporting Structures
Revision Date: October 2014
Entry Into Force Date: January 2015
A new item B.5 has been added as follows:

5. Bow and stern thrusters

Note: The requirements given below shall only be applied for thrusters intended for manoeuvring aids, which are integrated in the ship structure and which are able to produce transverse thrust at
very slow ship speeds. For thrusters which are used beyond that of short-term manoeuvring aids in harbours or estuaries, or use during canal passage, additional requirements may be defined by TL.

5.1 Unit wall thickness

The wall thickness of the unit is, in general, to be in accordance with the manufacturer’s practice, but is to be not less than the thickness of the adjacent shell plating plus 10 per cent or 2 mm whichever is the greater, subject to a minimum of 7 mm.

5.2 Thruster unit installation details

The tunnel tube is to be fitted either between a pair of deep floors or bulkheads extending to above the design waterline or in a separate watertight compartment.

The shell plating thickness is to be locally increased by 50 per cent in way of tunnel thruster connections.

For welded tube connections the welding is to be by full penetration welding.

The tunnel tube is to be framed to the same standard as the surrounding shell plating.

The unit is to be adequately supported and stiffened.

Thrust element housing structures as holding fixtures for propulsion units are to be effectively connected to the tunnel structure.

Engine housing and supporting structures shall withstand the excitation in case propulsion engine is directly supported by ship structure.

If suction or draining ducts are arranged in the ship’s bottom the design bottom slamming pressure P_{SL} according to Section 5, E.3 is to be considered.

5.3 Welding details

All welding of structural elements which are part of the watertight integrity of the ship hull are generally to be carried out as welds with full root penetration, according to Section 20, B (see also Section 20, Figure 20.8). In certain circumstances HV- or DHV-welds with defined incomplete root penetration according to Section 20, B (see also Section 20, Figure 20.9) may be used for lightly loaded structural elements for which the risk of damage is low.

If the gear housing is supported in the vicinity of the propeller hub, the support bracket is to be connected to the tunnel by HV- or DHV-welds with full root penetration. The transition is to be grinded notch-free. The radius R of the transition welding in the following figure is not to be less than determined by the following formula:

$$R = 3 + 0.7 \times t_s \times \cos(AW - 45^\circ) \text{ [mm]}$$

t_s: thickness [mm] of the gear housing support bracket

AW: angle [°] between tunnel and gear housing support bracket
Connection between gear housing support bracket and thruster tunnel

5.4 Thruster grids

For ships with ice class notation see also Section 14 D.11

For performing of in water surveys of manoeuvring equipment, such as bow thrusters the requirements stated in Section 25 will be specially considered taking into account their design.

07. Section 12 – Tank Structures

Revision Date: October 2014

Entry Into Force Date: January 2015

Item A.2 has been revised as follows:

\[P_T = P_{ST} + P_{DT} \]

\[P_T = P_{T1}, P_{T2}, P_{T3}, P_{T4}, P_{T5} \]

For tank structures of tanks adjacent to the shell the pressure \(P_T \) below \(T_{\text{min}} \) need not be larger than:

\[P_T - \rho \cdot g \cdot (T_{\text{min}} - z) + P_{DT} + P_W \leq (P_{ST} + P_{DT}) \]

\[P_W = P_{WS} \text{ or } P_{WB} \text{ as applicable [kN/m}^2\text{].} \]

\[P_{WS} = \text{Wave load on side shell [kN/m}^2\text{] according to Section 5, D.2.} \]

\[P_{WB} = \text{Wave load on bottom [kN/m}^2\text{] according to Section 5, D.3.} \]

\[T_{\text{min}} = \text{Smallest design ballast draught [m]} \]

...
08. Section 14 - Ice Strengthening

Revision Date: October 2014

Entry Into Force Date: January 2015

A new item D.11 has been added as follows:

11. Ice-Strengthening of Lateral Thruster Grids

11.1 As navigating within icy covered waters, ice-strengthening of lateral thruster grids shall be required. Refer also to TL Rules Chapter 4 Machinery Section 19 for Machinery for ICE Class Notation.

Lateral thruster tunnels are generally to be situated outside the icebelt defined in D.1.1 by the bow, midbody, and stern regions (for ICE-B4 also forefoot region). Positioning of any portion of the grid within the icebelt shall be subject to consideration of TL due to its encountering loads arising from intact ice.

Grids installed at the inlets of such tunnels may be subjected to loads arising from broken ice and are to be designed according to 11.2 and 11.3 below.

11.2 For a grid of standard construction, intercostal bars are to be fitted perpendicular to continuous bars (see Fig. 15.5). Continuous and intercostal bars are to be evenly spaced not more than \(s_{c,max} = s_{i,max} = 500\, \text{mm}\) (minimum 2 x 2 bars).

The grid is not to sticked out outside the surface of the hull (i.e. surface of the hull and grid bars shall be flush) and it is recommended to align continuous bars with the buttock lines at the leading edge of the thruster tunnel (see Fig. 15.5).

Grids of non-standard construction are to have an equivalent strength to that of the standard configuration described in 11.3.

11.3 The section modulus \(W_c\) of continuous bars, is not to be less than determined by the following formula:

\[
W_c \geq \frac{s_c \cdot D^2}{4 \cdot R_{\text{sh}}} \cdot (1 - \kappa) \cdot 10^{-4} \quad \text{[cm}^3\text{]}
\]

\(W_c \geq 35\, \text{cm}^3\)

\(s_c\) : spacing [mm] of continuous bars

\(D\) : diameter [mm] of thruster tunnel

\(\kappa\) : coefficient, defined as:

\[
\kappa = 0.4 \cdot \frac{l_c}{l_i} \cdot \frac{s_c}{s_i}
\]

\(l_c/l_i\) : ratio of moments of inertia of intercostal and continuous bars

\(s_c/s_i\) : ratio of spacings of continuous and intercostal bars
According to IACS UI SC191 Rev.6, item G. has been revised as follows:

G. Means of Access to the Cargo Areas of Oil Tankers and Bulk Carriers (7)

(7) Refer to UI SC190 and UI SC191.

According to IACS Recommendation 91, a new note has been added to item G.4.9 as follows:

Note: For guidelines for approval / acceptance of alternative means of access, IACS Recommendation 91 shall be applied.

According to IACS UR A2 Rev.3 Corr.1, items G.1.4 and G.2.4 have been revised as follows:

1.4 The selection of shipboard fittings is to be made by the shipyard in accordance with an industry standard (e.g. ISO 13795 Ships and marine technology – Ship’s mooring and towing fittings – Welded steel bollards for sea-going vessels ISO 3913 Shipbuilding Welded Steel Bollards) accepted by TL.
2.4 The selection of shipboard fittings is to be made by the shipyard in accordance with an industry standard (e.g. ISO 13795 Ships and marine technology – Ship’s mooring and towing fittings – Welded steel bollards for sea-going vessels ISO 3913 Shipbuilding Welded Steel Bollards) accepted by TL.

12. Section 20 – Welded Joints
Revision Date: July 2014
Entry Into Force Date: January 2015
Item B.3.1.1 has been revised as follows:

3.1.1 Depending on the plate thickness, the welding method and the welding position, butt joints shall be of the square, V or double-V shape conforming to the relevant standards (e.g. EN 22553/ISO 2533 ISO 2553, ISO 9692-1, -2, -3 or -4). ...

13. Section 21 – Structural Fire Protection
Revision Date: November 2014
Entry Into Force Date: January 2015
According to IACS UI SC99 Rev.2, item B.12.1.5 has been revised as follows:

12.1.5 A short length, not exceeding 600 mm, of flexible bellows constructed of combustible material may be used for connecting fans to the ducting in air conditioning rooms.

14. Section 21 – Structural Fire Protection
Revision Date: August 2014
Entry Into Force Date: January 2015
According to IACS UI SC 100, item B.12.9 has been revised as follows:

12.9 Closing of ventilation inlets and outlets
The main inlets and outlets of all ventilation systems shall be capable of being closed from outside the spaces being ventilated. The means of closing shall be easily accessible as well as prominently and permanently marked and shall indicate whether the shut-off is open or closed.

Ventilation inlets and outlets located at outside boundaries are to be fitted with closing appliances. Such inlets and outlets need not comply with C.8.2.1.

15. Section 21 – Structural Fire Protection
Revision Date: November 2014
Entry Into Force Date: January 2015
Item B.17.6.4 Note (10) has been revised as follows:

(10) Reference is made to the Interim Guidelines for evacuation analyses for new and existing passenger ships, adopted by IMO by MSC/Circ. 1033 MSC/Circ.1238.
16. Section 21 - Structural Fire Protection
Revision Date: November 2014
Entry Into Force Date: January 2015
According to IACS UI SC99 Rev.2, item C.8.1.5 has been revised as follows:

8.1.5 A short length, not exceeding 600 mm, of flexible bellows constructed of combustible material may be used for connecting fans to the ducting in air conditioning rooms.

17. Section 21 – Structural Fire Protection
Revision Date: August 2014
Entry Into Force Date: January 2015
According to IACS UI SC 100, item C.8.7 has been revised as follows:

8.7 Closing of ventilation inlets and outlets
The main inlets and outlets of all ventilation systems shall be capable of being closed from outside the spaces being ventilated. The means of closing shall be easily accessible as well as prominently and permanently marked and shall indicate whether the shut-off is open or closed.

Ventilation inlets and outlets located at outside boundaries are to be fitted with closing appliances. Such inlets and outlets need not comply with C.8.2.1.

18. Section 26 – Stability
Revision Date: November 2014
Entry Into Force Date: January 2015
Item B.2.8 has been revised as follows:

The loading conditions which should be considered for ships carrying timber deck cargoes are specified in 2.7. The stowage of timber deck cargoes should comply with the provisions of Chapter 3 of the Code of Safe Practice for Ships Carrying Timber Deck Cargoes, 1991 (Resolution A.715 (17) Resolution A.1048 (27)).

19. Section 26 - Stability
Revision Date: November 2014
Entry Into Force Date: January 2015
Item G.1.3 has been revised as follows:

Before a voyage commences, care should be taken to ensure that the cargo, cargo handling cranes and sizeable pieces of equipment have been properly stowed or lashed so as to minimize the possibility of both longitudinal and lateral shifting, while at sea, under the effect of acceleration caused by rolling and pitching (refer to the Guidelines for the preparation of the Cargo Securing Manual, MSC/Circ.745 MSC.1/Circular.1353).
20. Section 27 - Bulk Carriers, Ore Carriers And Ships With Strengthenings For Bulk Cargo And Heavy Cargo

Revision Date: July 2014

Entry Into Force Date: January 2015

According to IACS UR S20 Rev.6, item D.1 has been revised as follows:

D. Evaluation of Allowable Hold Loading for Non-CSR Bulk Carriers Considering Hold Flooding

1. General

These requirements are to be applied to non-CSR bulk carriers of 150 m in length and upwards, intending to carry solid bulk cargoes having a density of 1.0 t/m³ or above, and with,

- Single side skin construction, or
- Double side skin construction in which any part of longitudinal bulkhead is located within B/5 or 11.5 m, whichever is less, inboard from the ship’s side at right angle to the centreline at the assigned summer load line.

The loading in each hold is not to exceed the allowable hold loading in flooded condition, calculated as per 4, using the loads given in 2 and the shear capacity of the double bottom given in 3.

In no case is the allowable hold loading, considering flooding, to be greater than the design hold loading in the intact condition.

These requirements do not apply to CSR Bulk Carriers.

21. Section 27 - Bulk Carriers, Ore Carriers And Ships With Strengthenings For Bulk Cargo And Heavy Cargo

Revision Date: July 2014

Entry Into Force Date: January 2015

According to IACS UR S18 Rev.9, item E.1 has been revised as follows:

E. Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Bulk Carriers in Non-CSR Bulk Carriers Considering Hold Flooding

1. Application and Definitions

These requirements are to be applied to non-CSR bulk carriers of 150 m in length and upwards, intending to carry solid bulk cargoes having a density of 1.0 t/m³, or above, with vertically corrugated transverse watertight bulkheads, and with,

- Single side skin construction, or
- Double side skin construction in which any part of longitudinal bulkhead is located within B/5 or 11.5 m, whichever is less, inboard from the ship’s side at right angle to the centreline at the assigned summer load line.
The net thickness t_{net} is the thickness obtained by applying the strength criteria given in 4.

The required thickness is obtained by adding the corrosion addition t_k given in 6., to the net thickness t_{net}.

In this requirement, homogeneous loading condition means a loading condition in which the ratio between the highest and the lowest filling ratio, evaluated for each hold, does not exceed 1.20, to be corrected for different cargo densities.

These requirements do not apply to CSR Bulk Carriers.

22. Section 28 - Oil Tankers

Revision Date: July 2014
Entry Into Force Date: January 2015

According to IACS UI SC191 Rev.6, item D.1 has been revised as follows:

D. Stability

1. Intact Stability (4)

(4) Refer to UI MPC11

PART A – CHAPTER 2 – MATERIAL

01. Section 2 - Mechanical And Technological Testing Procedures

Revision Date: July 2014
Entry Into Force Date: January 2015

Items H.11.1.1, H.12.1.2, H.12.6.2, H.12.7.1 and the title of Table 2.6 have been revised as follows:

11.1.1 Ultrasonic testing is to be performed with the impulse echo technique in accordance with recognized standards. Such are e.g. EN 12223, EN ISO 7963, EN 12668-3, EN 583-1 ISO 16810, EN 10228-3, EN 10160 and EN 12680-1. ...

12.1.2 As a rule radiographic testing is to be performed in accordance with recognized standards such as EN 444 ISO 5579, EN ISO 17636 for the radiographic examination of welded joints or EN 12681 for the testing of cast components.

12.6.2 For the selection of the film class EN 444 ISO 5579 is to be observed. A comparison of comparable international standards for film system classes is contained in Table 2.7.

12.7.1 The parameters for the exposure shall be selected in such a way that in the entire region to be evaluated the density S of the radiographs according to EN 444 ISO 5579 is larger than $S > 2.0$ for test category A and larger than $S > 2.3$ for test category B. ...
Table 2.6 Film System classes and metal screens in accordance with EN 444 ISO 5579 and EN 12681

02. Section 5 - Steel Forgings
Revision Date: July 2014
Entry Into Force Date: January 2015
Item G.6.3 has been revised as follows:

6.3 The tests may be performed according to EN 583-1 ISO 16810, EN 10228-3, SEP 1923 and/or other equivalent and recognized standards, manufacturer or customer specifications.

03. Section 6 - Steel Castings
Revision Date: July 2014
Entry Into Force Date: January 2015
The title of Table 6.28 has been revised as follows:

Table 6.28 Radiation source in dependence of the test class and the penetrated thickness following EN 444 ISO 5579 and EN 12681

PART A – CHAPTER 3 – WELDING

01. Section 3 - Welder’s Qualification Tests
Revision Date: August 2014
Entry Into Force Date: January 2015
Preliminary Remarks and item C.1.1 have been revised as follows:

Preliminary remarks:

The following rules for the testing of welders conform to or make use of the standards EN 287 resp. ISO 9606, Parts 1 (Steel) and 2 (Aluminium). For other non-ferrous metals, EN ISO 9606-2 shall continue to apply until the corresponding parts of EN 287 and ISO 9606 come into force.

Where no details of the tests are specified in the following Rules, the tests shall be performed in accordance with these standards. References in the text also refer to these standards unless otherwise specified.

Some deviations from the standards have been made with regard to the testing of steel welders EN 287 resp. (ISO 9606-1), especially in relation to the ranges of approval for base materials and weld types which have been somewhat narrowed down compared with the standards. As far as the testing
of non-ferrous metal welders is concerned, it is chiefly the weld forms which differ from those of the standard.

1.1 In the case of base materials - and in contrast to the provisions of the standards EN 287-1 resp. ISO 9606-1 - higher-strength (hull structural) steels with a minimum yield strength R_{eH} of up to 355 [N/mm2] (up to 360 [N/mm2] in the case of pipe-grade steels) shall only be considered, following testing, as being included in the material category W 01 if the test (using the appropriate welding consumables) was also performed on a higher-strength steel.

02. Section 5 – Welding Consumables And Auxiliary Materials
Revision Date: September 2014
Entry Into Force Date: January 2015

According to IACS UR W17, Section 5 has been revised totally.

03. Section 5 - Welding Consumables And Auxiliary Materials
Revision Date: July 2014
Entry Into Force Date: January 2015

Item A.4.1 has been revised as follows:

4.1 Basic groups and grades
Filler metals are mainly divided into two three groups regarding their strength properties as classified below:

...

Each filler metal group is further divided into several grades:

Welding consumables and auxiliary materials (that are classified generally above) for the welding of hull structural steels (including the corresponding grades of steel forgings and castings) and of comparable structural steels are subject to classification, designation and approval as follows:

- According to their nature (e.g. covered electrode, fluxcored wire electrode, wire-gas combination or wire-flux combination).

...
According to their nature (e.g. covered electrode, flux-cored wire electrode, wire-gas combination or wire-flux combination).

04. Section 7 - General Design Principles
Revision Date: August 2014
Entry Into Force Date: January 2015

Item B.1.1 has been revised as follows:

1.1 The depiction of welded joints and also the shapes of joints and welds shall conform to the standards (e.g. EN ISO 17659, EN 22553/ISO 2553, ISO 9692-1 or TS). They shall be identified in the manufacturing documents (drawings, etc.) in an unambiguous manner, e.g. by means of the standard symbols.

05. Section 10 - Non-Destructive Testing Of Welds
Revision Date: August 2014
Entry Into Force Date: January 2015

Items L.1.1, L.2.3, L.2.4, L.2.5, L.4.4, L.5.1 and M.1.3 have been revised as follows:

L.1.1 The test appliances, probes and other accessories (calibration and reference blocks for adjusting the sensitivity, reference scales, etc.) shall conform to the state of the art and the relevant standards (e.g. EN 12223, EN ISO 7963/ISO 2400, EN ISO 17640 or EN 583 ISO 16810 or related TS standards).

L.2.3 Depending on the intended method of echo height definition, the sensitivity setting shall be performed using calibration reflectors of known shape, position and size (e.g. large flat reflectors, side-drilled holes) in accordance with the provisions of EN 583-2 ISO 16811.

L.2.4 If necessary (e.g. for defects close to the surface), the sensitivity setting is to be corrected in accordance with EN 583-2 ISO 16811. When testing unalloyed and low-alloy (hull) structural steels and where the sonic distances are not too far (see EN 583-2 ISO 16811), the sound attenuation may normally be disregarded. A transfer correction to determine the coupling differences between the surface of the reference block and that of the test piece shall, however, be performed in every case. The value of the transfer correction shall be stated in the inspection report.

L.2.5 For more efficient detection of defects it is recommended that testing be performed with a test sensitivity (search sensitivity) increased by approximately 6 dB over the chosen registration level (see 5.1). However, the registration level setting is generally to be used when evaluating defect indications. All echo indications to be registered must attain at least 20 % of the display height even at the maximum sonic distance (see EN 583-2 ISO 16811). In the case of electrogas welded seams,
the inspection shall normally be performed with a sensitivity increased by 12 dB, and this fact shall be expressly stated in the inspection report with a reference to the welding process (e.g. EG + 12 dB).

L.4.4 With plate thicknesses (weld thicknesses) of less than 30 mm, testing may be performed with an angle of incidence of 70°. With thicknesses of 30 mm and over, two angles of incidence (70° and 45° or 60°) shall be used. Where the surface is curved, the necessary angle of incidence shall be determined in accordance with EN 583-2 ISO 16811. With very large wall thicknesses (above about 100 mm), the inspection must be performed using a tandem technique (with fixed, mechanical coupling of two similar probes) for different depth zones.

L.5.1 ...

For other methods of echo height definition (e.g. the reference block method), the registration level shall be determined in accordance with EN 583-2 ISO 16811.

M.1.3 The proportion of magnetic particles in the vehicle liquid must conform to the manufacturer's instructions and shall be verified (e.g. by means of a test indicator or by a separation test using a glass centrifuge vessel to ASTM D 96-73, Fig. 6 API MPMS Chapter 10.4). Dry test media may only be used for tests at elevated temperatures (e.g. on root passes).

06. Section 11 - Mechanical And Technological Tests

Revision Date: September 2014
Entry Into Force Date: January 2015

According to IACS UR W17, Section 11 has been revised totally.

07. Section 12 - Welding Of Hull Structures

Revision Date: August 2014
Entry Into Force Date: January 2015

Items F.4.3.3.6 and G.10.1.1 have been revised as follows:

F.4.3.3.6 The fracture test has to be performed in accordance with EN 1320 / ISO 9017. ...

G.10.1.1 Depending on the plate thickness, the welding process and the welding position, butt joints shall take the form of square, V or double-V welds (double V butt joints) conforming to the standards (e.g. EN 22553 ISO 2553, EN 29629, EN ISO 9692-2, DIN 8552 or EN ISO 9692-4). ...
08. Section 16 - Welding Of Machinery Components

Revision Date: August 2014
Entry Into Force Date: January 2015

Item F.5.3 has been revised as follows:

5.3 ...

The remainder of the test pieces is to be divided into convenient portions which, after removal of one of the welds, are to be broken open on alternate sides for evaluation of the fracture (see EN 1320 ISO 9017).

PART B – CHAPTER 4 – MACHINERY

01. Section 2 - Internal Combustion Engines and Air Compressors

Revision Date: November 2014
Entry Into Force Date: January 2015

According to IACS UR M10 Rev.4, new definitions has been added to item A.2.1 as follows:

- Low-Speed Engines; diesel engines having a rated speed of less than 300 rpm.
- Medium-Speed Engines; diesel engines having a rated speed of 300 rpm and above, but less than 1400 rpm.
- High-Speed Engines; diesel engines having a rated speed of 1400 rpm and above.

02. Section 2 – Internal Combustion Engines and Air Compressors

Revision Date: August 2014
Entry Into Force Date: January 2015

Items K.1, K.2, K.3 have been deleted, a new note has been added and following items have been renumbered as follows:

K. Engine Alignment / Seating

1. Seating of Propulsion Plants and Auxiliary Machinery

2. Principles for the Workmanship of Seating

3. Basic Calculations

For engine alignment / seating see TL Additional Rules, Seating of Propulsion Plant.

4. 1. Crankshaft Alignment

5. 2. Permissible Crank Web Deflection

6. 3. Reference Values for Crank Web Deflection
03. Section 5 – Main Shafting
Revision Date: November 2014
Entry Into Force Date: January 2015
Item C.3.4 and Figure 5.2 have been revised as follows:

3.4 The outside diameter of the threaded end for the propeller retaining nut should not be less than 60% of the calculated major taper diameter \(A \). (See Fig. 5.2)

![Figure 5.2 Typical details of propeller shaft ends](image)

04. Section 5 - Main Shafting
Revision Date: August 2014
Entry Into Force Date: January 2015
Item E.2 has been revised as follows:

... Unless otherwise agreed it may also be performed according to EN 583-1, ISO 16810, EN 10228-3, SEP 1923, EN 10228-3 and/or other equivalent and recognized standards, manufacturer or orderer specifications. ...

05. Section 7 – Gears, Couplings
Revision Date: December 2014
Entry Into Force Date: January 2015
According to IACS UR M56 Rev.2, item C. has been examined and revised.

06. Section 7 - Gears, Couplings
Revision Date: September 2014
Entry Into Force Date: January 2015
Note (2) in Table 7.3 has been revised as follows:

(2) Estimated maximum torque load for windlasses

07. Section 9 - Steering Gears and Thrusters
Revision Date: August 2014
Entry Into Force Date: January 2015
Item A.1.3.1 has been revised as follows:
08. Section 16 - Pipe Lines, Valves, Fittings and Pumps

Revision Date: August 2014

Entry Into Force Date: January 2015

Item C.2.7 has been revised as follows:

\[t = \frac{a}{100-a} \cdot s_0 \quad [\text{mm}] \]

\(s_0 \) = Minimum thickness according to 2.1 [mm].

09. Section 16 – Pipe Lines, Valves, Fittings and Pumps

Revision Date: November 2014

Entry Into Force Date: January 2015

Item T.1.1, Note (8) has been revised as follows:

(8) For application of resolution MEPC.159(55), the phrase “installed on board a ship on or after 1 January 2010” shall be interpreted as follows:

- For new ships, installations on board ships the keels of which are laid or which are at a similar stage of construction on or after 1 January 2010.

- For existing ships, new installations with a contractual delivery date to the ship on or after 1 January 2010 or, in the absence of a contractual delivery date, the actual delivery of the equipment to the ship on or after 1 January 2010.

Resolution MEPC.159 (55) is superseded by Resolution MEPC.227 (64).

10. Section 18 - Fire Protection and Fire Extinguishing Equipment

Revision Date: July 2014

Entry Into Force Date: January 2015

According to IACS Recommendation 135, item E.1.4.3 has been revised as follows:

... In cargo ships, the room(s) where the pump and prime mover are installed is to should have adequate space for maintenance work and inspections. ...
11. Section 18 – Fire Protection and Fire Extinguishing Equipment
Revision Date: November 2014
Entry Into Force Date: January 2015
According to Resolution MSC.354(92) IMSBC Code Changes, item Q.1.3.8, Q.1.5.1.2, Q.1.5.2, Q.2.2.1, Q.2.2.2, Q.5.2.9, Q.14.2.1, Q.14.2.2, Q.14.2.3 and Table 18.11 have been revised.

PART B – CHAPTER 4-1 – AUTOMATION

01. General
Revision Date: August 2014
Entry Into Force Date: January 2015
Misspellings and wrong references have been corrected in whole rules.

02. Section 4 – Automation System
Revision Date: November 2014
Entry Into Force Date: January 2015
According to IACS UR M35 Rev.6, item A.2 has been added as follows:

2. For main engines, a system of alarm displays and controls is to be provided which readily ensures identification of faults in the machinery and satisfactory supervision of related equipment. This may be provided at a main control station or, alternatively, at subsidiary control stations. In the latter case, a master alarm display is to be provided at the main control station showing which of the subsidiary control stations is indicating a fault condition.

Alarms, remote indications and safeguards listed in Table 8.1 and 8.2 are respectively referred to trunk-piston and cross-head reciprocating internal combustion engines.

The detailed requirements covering communications of alarms from machinery spaces to the bridge area and accommodation for engineering personnel, are contained in IACS UR M29 “Alarm systems for vessels with periodically unattended machinery spaces”.

03. Section 4 – Automation System
Revision Date: November 2014
Entry Into Force Date: January 2015
According to IACS UR M36 Rev.4, item A.3 has been added as follows:

3. For trunk-piston reciprocating internal combustion auxiliary diesel engines, all monitored parameters for which alarms are required to identify machinery faults and associated safeguards are listed in Table 8.7.
All these alarms are to be indicated at the control location for machinery as individual alarms; where the alarm panel with individual alarms is installed on the engine or in the vicinity, common alarm in the control location for machinery is required.

For communication of alarms from machinery space to bridge area and accommodation for engineering personnel detailed requirements are contained in IACS UR M29 “Alarm systems for vessels with periodically unattended machinery spaces”.

04. Section 4 – Automation System
Revision Date: November 2014
Entry Into Force Date: January 2015
According to IACS UR M35 Rev.6, item C.3 has been revised as follows:

3. Where safety systems (required automatic stops) are provided with overriding arrangements, these shall be safeguarded against accidental operation as to preclude their inadvertent operation and a suitable alarm is to be operated by their activation. The actuation of overriding arrangements is to be indicated at each control position and recorded. When the engine is stopped automatically, restarting after restoration of normal operating conditions is to be possible only after manual reset, e.g. by-passing the control lever through the 'stop' position. Automatic restarting is not permissible (see IACS URM30.2.8).

05. Section 4 – Automation System
Revision Date: November 2014
Entry Into Force Date: January 2015
According to IACS UR M35 Rev.6, item D.2 has been revised as follows:

2. Where automatic power reductions are provided with overriding arrangements, these shall be safeguarded against accidental operation as to preclude their inadvertent operation, and a suitable alarm is to be activated by their operation. The actuation of overriding arrangements is to be indicated at each control position and recorded.

06. Section 8 – Tables
Revision Date: November 2014
Entry Into Force Date: January 2015
Tables 8.1 and 8.2 have been revised.

07. Section 8 – Tables
Revision Date: November 2014
Entry Into Force Date: January 2015
According to IACS UR M36 Rev.4, table 8.7 has been revised.
PART B – CHAPTER 5 – ELECTRICAL INSTALLATION

01. Section 20 - Electrical Equipment
Revision Date: July 2014
Entry Into Force Date: January 2015
Item F.1.4 has been revised as follows:

1.4 Cables manufactured in accordance with the relevant recommendations of IEC publication 60092-350, 60092-354, 60092-352, 60092-353, 60092-354, 60092-359, 60092-360, 60092-370, 60092-376 will be accepted by TL provided that they are tested to its satisfaction.

PART C – CHAPTER 7 – HIGH SPEED CRAFTS

01. Section 1 - General Comments and Requirements
Revision Date: August 2014
Entry Into Force Date: January 2015
Item 1.4.46 has been revised as follows:

1.4.46 "Passenger" is every person other than: the master and members of the crew or other persons employed or engaged in any capacity on board a craft on the business of that craft; and

1. a child under one year of age.

02. Section 2 - Buoyancy, Stability and Subdivision
Revision Date: November 2014
Entry Into Force Date: January 2015
A new item 2.2.7.7 has been added as follows:

2.2.7.7 The required glass thickness for windows and side scuttles shall be determined according to ISO 21005 - Annex A, using the calculated pressure \(p \) according to Section 3, K.3.5.5.

03. Section 3 – Structures
Revision Date: December 2014
Entry Into Force Date: January 2015
Item K.3.1.8.2 has been revised as follows:

... The TL Rules - Part D – Chapter 75 Guidelines for Corrosion Protection and Coating Systems are Part A - Chapter 1 Hull - Section 22 is to be observed.
04. Section 3 - Structures
Revision Date: August 2014
Entry Into Force Date: January 2015

Item K.3.6.1.3.1.1 has been revised as follows:

Depending on the plate thickness, the welding method and the welding position, butt joints shall be of the square, V or double-V shape conforming to the relevant standards (e.g. EN 22553/ISO 2553, ISO 9692 -1, -2, -3 or -4).

05. Section 3 – Structures
Revision Date: January 2014
Entry Into Force Date: January 2015

Figure 3.6.19 has been revised as follows:

\[
t = \text{plate thickness in accordance with K.3.7.7.3.3 in [mm]}
\]
\[
t' = \frac{d}{3} + 5 \text{ [mm]} \text{ where } d < 50 \text{mm}
\]
\[
t' = 3 \sqrt{d} \text{ [mm]} \text{ where } d \geq 50 \text{mm}
\]

For shaft brackets of elliptically shaped cross section d may be substituted by 2/3 d in the above formulae.
4.3.4 Ekipman

Bölüm 2 C.7’de verilen formüle göre hesaplanan ekipman numarasının kullanılması ve Tablo 2.3’e göre seçilen demir ve zincirin TL tarafından sertifikalandırılması durumunda EN klaslama işaretli verilir.

02. Bölüm 1 – Klaslama ve Sörveyler
Revizyon Tarihi: Ağustos 2014

Yürürlüğe Giriş Tarihi: Ocak 2015

- Madde B.2.1.3’de aşağıdaki revizyon yapılmıştır:

... Ancak 5 yıllık klas yenileme sörvey periyodu içerisinde dip sörveyi en az 2 kez yapılmalı ve klas yenileme sörveyi ile birlikte yapılan dip sörveyi yat karada iken yapımalıdır. ...

03. Bölüm 1 – Klaslama ve Sörveyler
Revizyon Tarihi: Ağustos 2014

Yürürlüğe Giriş Tarihi: Ocak 2015

- Madde B.3.1’e aşağıdaki metinler eklenmiştir:

Tüm Tekne Yapısının ayrıntılı muayenesi

Bu muayeninin kapsamı aşağıdaki gibi olmalıdır:

- Teknenin dip sörveyine ilaveten borda, güverte, üst bina kaplamalarının durumu kontrol edilmelidir.
- Postaların, döşeklerin, perdelerin, yapısal elemanların, şafat ve dümen kovanlarının ve yapısal tank cidarlarının birleşim bağlantıları kontrol edilmelidir.
- Güverte ile güverte evleri veya üst binalar arasinda herhangi bir bağlantı ile birlikte tekne güverte bağlantısı kontrol edilmelidir.
- Tekne yapısı, vardevela puntelleri, irgat, şafat braketleri, üstünça, yaşamaba babaları, direk basamakları, arma donanımı bağlantılı plakaları (chainplate), v.b. içeren teçhizatların bağlantıları yerlerde kontrol edilmelidir.
- ETP(Elyaf Takviyeli Plastik) yatlarda jelkotun durumu incelenecek, özellikle jelkotta herhangi bir çatlamak, kabarcık veya başka bir hasar olup olmadığı incelenecektir.
- Sandviç yapıda olan tekneler için parçaların özden ayrılmadığının dikkatlice kontrolü gerçekleştirilerek. Bu kontrol, teknenin dış kaplamasına çekiciyle yaparak ve iştilen sesler arasındaki farklılıklar değerlendirilerek ya da TL tarafından tanınan tahribatsız muayene yöntemleri ile gerçekleştirilir. Tekne ve güverte arasındaki bağlantısı, özellikle tekn ve güverte farklı malzemelerden yapıldığı zaman, dikkatli bir şekilde kontrol edilmelidir.
04. Bölüm 1 – Klaslama ve Sörveyler
Revizyon Tarihi: Ağustos 2014

Yürүrlüğe Giriş Tarihi: Ocak 2015

- Madde B.3.3’e a şağdaki metinler eklenmiştir:

Su altında kalan tekne gövdesinin laminatları içerisinde ve/veya jelkottaki çatıklarında “ozmoz” olayının mevcudiyetinin doğrulanması gerekli dır. Bu amaçla tekne, herhangi bir boya işlemi yapılmadan önce kuru durumda dip sörveyi yapılabilecek konumda olmalıdır, böylece dikkatli bir görsel muayeneye izin verir.

05. Bölüm 2 – Tekne Konstrüksiyonu - Genel İstekler
Revizyon Tarihi: Nisan 2014

Yürүrlüğe Giriş Tarihi: Ocak 2015

Madde A.5.7.3’de atf yapılan ISO standartı aşağıdaki şekilde değiştirilmiştir:

... Gros tonu 300’den küçük yatlar da B ve C bölgesi için ISO 12216’ya uygun; kör kapaklı lumbuzlar donatıldıkları bölgenin kural hesap basıncı değerinin 3 katı teste tabi tutulacaklardır. ...

06. Bölüm 2 – Tekne Konstrüksiyonu - Genel İstekler
Revizyon Tarihi: Eylül 2014

Yürүrlüğe Giriş Tarihi: Ocak 2015

A.4.2’de \(L_H \) tanımı revize edilmiş ve BK ve KK tanımları hem A.4.2 hem de E.2’ye eklenmiştir:

\[L_H = \] Tahribatsız şekilde sökülebilen ve teknenin yapışal bütünüğüne etki etmeyen hareketli kaldırılabılır kısımlar hariç (Teknenin her iki nihayetindeki korkuluklar, platformlar, üsturmaçalar, vb.), statik yüklü su hattına paralel olarak baş bodoslamanın ön tarafında küçük bodoslamanın veya küçük aynanın arka tarafına kadar ölçulen tekne boyudur [m].

\[B K = \] Baş kaime. Tam yüklü su hattı ile (tekne trimsiz halde) baş bodoslamanın ön tarafının kesiştiği yerdeki kaime,

\[K K = \] Kiç kaime. Tam yüklü su hattı ile (tekne trimsiz halde) dümen bodoslamasının arka tarafı ya da dümen bodoslaması olmayan yatlar da dümen rodunun merkezinin kesiştiği yerdeki kaime. Sıra dışı küçük bodoslamaya sahip ya da dümeni olmayan yatlar için küçük kaimenin konumu ve \(L_{H\text{HF}} \), özel olarak göz önünde bulundurulacaktır.
07. Bölüm 2 – Tekne Konstrüksiyonu - Genel İstekler
Revizyon Tarihi: Ağustos 2014
Yürürlüğe Giriş Tarihi: Ocak 2015
Madde A.5.4.1, A.5.4.3.3, A.5.5.1, 5.5.2 ve 5.5.3 revize edilmiştir.

08. Bölüm 3 – Tekne Konstrüksiyonu - Ahşap Tekneler
Revizyon Tarihi: Mayıs 2014
Yürürlüğe Giriş Tarihi: Ocak 2015
Madde D.5.3 aşağıdaki şekilde revize edilmiştir:

Kol boyu 250mm den az olan döşekler, postalara en az 3 civata ile, daha uzun olanlar ise 80 mm’yi aşmayacak şekilde uygun sayıda civata ile bağlanacaktır. İç omurgalı teknelerde, uygun aralıklı 4 civata ile bağlanabilir. aşağıdaki formüle göre belirlenen sayıda civata ile bağlanacaktır.

\[n = \frac{0.096 \cdot \ell}{d} \]

burada;

\(\ell \) = döşek kol boyu

\(d \) = kullanılan civata çapı

\(n \) = civata sayısı (minimum 3 olacak şekilde)

09. Bölüm 3 – Tekne Konstrüksiyonu – Ahşap Tekneler
Revizyon Tarihi: Mart 2014
Yürürlüğe Giriş Tarihi: Ocak 2015
Madde D.7.2 aşağıdaki şekilde revize edilmiştir:

... Derin kemereleve ve normal kemereleve, uygun yerlere gelecek tarzda ve Tablo 3.10’da belirtilen sayıda, düsey braketer tertip edilecektir. Kaplama haricinde braketerin dalları, atklara ve postalara, çapı Tablo 3.12 (b)’de verilen minimum 4 adet civata ile bağlanacaktır.

... YUKARIDA BELİRTLİ TABELADAKİ (TABLO 3.7) TABLO 3.10’DA, DÖVME, KöŞEBENT VE LEVHA ÇELİK BRAKETLERİN BOYUTLARI VERILmiştir.

...
Revizyon Tarihi: Mart 2014
Yürürlüğe Giriş Tarihi: Ocak 2015
Madde E.4.4 aşağıdaki şekilde revize edilmiştir:

... Çift braketin her birinin kalınlığı kullanılan posta kalınlığının yarısından az alınmaz. Braket bağlantı civatalarının çap ve sayıları için Ç-D.7.2 maddesine bakınız.

Revizyon Tarihi: Eylül 2014
Yürürlüğe Giriş Tarihi: Ocak 2015
Tablo 3.12 (a) Döşek Bağlantıları’da verilen Tekne derinliği H₁ ifadesi Tekne Derinliği H olarak düzeltilmiştir.

12. Bölüm 4 – Tekne Konstrüksiyonu - Elyaf Takviyeli Plastik Tekneler
Revizyon Tarihi: Ağustos 2014
Yürürlüğe Giriş Tarihi: Ocak 2015
Madde C.2.6.1 büyük ölçüde revize edilmiştir.

13. Bölüm 5 – Tekne Konstrüksiyonu - Çelik Tekneler
Revizyon Tarihi: Ağustos 2014
Yürürlüğe Giriş Tarihi: Ocak 2015
Madde C.2.2.3 aşağıdaki şekilde revize edilmiştir:

Alın kaynaklarında; levha kalınlığına, kaynak yöntemine ve pozisyonuna bağlı olarak, ilgili standartlara (örneğin; ISO 2553, EN 29629, TS) uygun küt alın, “V” veya “X” kaynak ağızları uygulanır.

Revizyon Tarihi: Ağustos 2014
Yürürlüğe Giriş Tarihi: Ocak 2015
Bölüm 5’e “L. Buz Takviyeleri” başlığı eklenmiştir.
15. Bölüm 7 – Makine ve Yardımcı Sistemler
Revizyon Tarihi: Ocak 2014
Yürürlüğe Girış Tarihi: Ocak 2015
Aşağıdaki maddeler E.8.5.1 olarak eklenmiştir:

8.5.1 Deniz Suyu Alıcıları
a) Madde 2.6 ile uygunluk gösteren en az iki adet deniz suyu alıcısi, soğutma sistemi için teçhiz edilecektir.
b) İki deniz suyu alıcısı; hem ana soğutma pompası hem de stand-by soğutma pompasına tedarik sağlayan bir çapraz bağlantı (cross-over) ile bağlanabilir.
c) Deniz suyu girişleri alçak seviyede olacaktır ve tüm normal seyir koşullarında suya batmış olarak kalacaklardır. Genel olarak yatın her bir bordasına bir tane deniz suyu girişi konacaktır.

16. Bölüm 7 – Makine ve Yardımcı Sistemler
Revizyon Tarihi: Mayıs 2014
Yürürlüğe Girış Tarihi: Ocak 2015
E.2.4 Esnek Hortumlar ve Genleşme Parçaları gereklikleri büyük ölçüde revize edilmiştir.

17. Bölüm 7 – Makine ve Yardımcı Sistemler
Revizyon Tarihi: Ağustos 2014
Yürürlüğe Girış Tarihi: Ocak 2015
Madde A.1, B.4, C.1.1.3 (yeni madde), D.1.1.1, E.8.1.1 ve F.1.1.1’de buz takviyeleri ile ilgili atıf yapılmıştır.

18. Bölüm 7 – Makine ve Yardımcı Sistemler
Revizyon Tarihi: Eylül 2014
Yürürlüğe Girış Tarihi: Ocak 2015
Tablo 7.9’da “Paslanmaz Çelik” malzemenin özel kullanım koşulu aşağıdaki şekilde değiştirilmiştir:
Deniz suyu sistemleri için östenitik paslanmaz çelik tavsiye edilmez. Östenitik paslanmaz çelik boruların kullanımı, kirlenmiş veya durgun deniz suyu ortamının bulunduğu durumlarda tavsiye edilmez. Temiz deniz suyunun devrimdaim olduğu sistemlerde, 316L veya daha iyi paslanmaz çelik borular tatmin edici sonuçlar verebilir.
19. Bölüm 7 Ek– Plastik Borular ve Diğer Metal Olmayan Borular
Revizyon Tarihi: Mayıs 2014
Yürürlüğe Giriş Tarihi: Ocak 2015

Aşağıdaki maddeler bölüme eklenmiş ve Tablo 7.30 bölümünden çıkarılmıştır.

1.2.1 Plastik borular, bu bölümde verilen koşullar altında çeşitli servislerde kullanılacaktır.

...

2.4 Elektriksel İletkenlik

2.4.1

a) 1000 pS/m (1pS/m=10-12siemens/metre)'den az iletkenliğe sahip sıvıları (örneğin; rafine ürünler ve damıtma ürünleri) taşıyan boru sistemleri iletken borularda yapılacaktır.

b) Taşınan sıvıya bağlı olmaksızın, tehlikeli alanlardan geçen plastik borular elektriksel olarak iletken olacaktır.

c) Elektriksel iletkenliğin sağlanması gerektiği durumlarda boruların ve fitinglerin direnci 1 x 105 Ohm/m’yi geçmeyecektir.

d) Boruların ve fitinglerin homojen olarak iletken olması tercih edilir. Boruların ve fitinglerin homojen olarak iletken olmadığı durumlarda, boru cidarına gelebilecek kivilcim hasarı ihtimaline karşı yeterli olarak korunan iletken katmanlar kullanılacaktır.

e) Yeterli topraklama sağlanacaktır.

20. Bölüm 9 – Elektrik Tesisi
Revizyon Tarihi: Ağustos 2014
Yürürlüğe Giriş Tarihi: Ocak 2015

Madde D.1.1 aşağıdaki şekilde revize edilmiştir:

Revizyon Tarihi: Ağustos 2014
Yürürlüğe Giriş Tarihi: Ocak 2015

22. Bölüm 10 Ek 2– Sabit Gazlı Yangın Söndürme Sistemi İlave İstekleri
Revizyon Tarihi: Ağustos 2014
Yürültüğe Giriş Tarihi: Ocak 2015
4. Diğer Sistemler maddesi, TL Kılavuzu”CO₂ Dışındaki Sabit Yangın Söndürme Sistemi Dizayn, Test ve Onay Kılavuzu”na atf içerecek şekilde aşağıdaki gibi revize edilmiştir:

4. Diğer Sistemler

23. Bölüm 12 Ek 1 – Meyil Tercübesi ve Boş Gemi Ağırlığı Sörvey
Revizyon Tarihi: Haziran 2014
Yürültüğe Giriş Tarihi: Ocak 2015
3. Sarkaçlar maddesi aşağıdaki şekilde revize edilmiştir:

Meyil ölçeri ve U-tübü kullanımı her durumda ayrı ayrı değerlendirilecektir. Meyil ölçeri veya diğer ölçüm cihazlarının en az bir sarkaçla birlikte kullanılması önerilir.

2.3. Bölüm 35 – Takviyeli Makina Tesisleri
Revizyon Tarihi: Ağustos 2014
Yürültüğe Giriş Tarihi: Ocak 2015
B.1 maddesi eklenerek, takip eden maddeler aşağıdaki şekilde revize edilmiştir:

1. Pervane Şaftları, Ara Şaftlar, Srast Şaftları

Minimum çap d, Bölüm 26’daki (1) formülü kullanılarak ve aşağıdaki (2) formülünde verilen C_{EW} faktörü kadar arttırılarak hesaplanacaktır.

\[d_E = C_{EW} \cdot d \text{ [mm]} \]

\[C_{EW} = 0.7 \cdot \sqrt{1 + \frac{665}{P_w^{0.6} \cdot a^{0.2}}} \geq 1 \]

\[d_E \text{ [mm]} \quad \text{Takviyeli şafat çapı} \]

Diğer semboller, Bölüm 26’da verilmiştir.
4. noktasinin önünde yer alan pervane şafının çap %5 azaltılabilir, ancak çap, Bölüm 26'da verilen d'den daha küçük olamaz.

2. Bağlantı Civataları

...

3. Pervaneler

...

4. Dişli Donanımlar

4.1 Diş dibi eğilme mukavemeti

...

4.2 Diş yanaklarına ait temas mukavemeti

...

4.3...

...

5. Elastik Kaplinler

...

6. Dümen Makası

...

PART C – CHAPTER 25 – MACHINERY CONDITION MONITORING

01. Annex B - Standards For Lubricating Oil Analysis

Revision Date: August 2014

Entry Into Force Date: January 2015

Table B.1 has been revised as follows:

<table>
<thead>
<tr>
<th>Test property</th>
<th>ISO Standard</th>
<th>Other test methods</th>
<th>Stern tube</th>
<th>Diesel engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kin. viscosity</td>
<td>3104</td>
<td>D 445</td>
<td>21</td>
<td>(DIN EN ISO)</td>
</tr>
<tr>
<td>[mm²/s]</td>
<td></td>
<td>DIN 3104</td>
<td>T 60100</td>
<td>K</td>
</tr>
<tr>
<td>Base number [mg KOH/g]</td>
<td>3771</td>
<td>D 2896</td>
<td>276</td>
<td>(DIN EN) 3771</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>---------------</td>
</tr>
<tr>
<td>Acid Number</td>
<td>D 664</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pensky-Martens [°C]</td>
<td>2719</td>
<td>D 93</td>
<td>34</td>
<td>MO 7919</td>
</tr>
<tr>
<td>Water content [% vol]</td>
<td>3733</td>
<td>D 95</td>
<td>34</td>
<td>(DIN ISO) 3733</td>
</tr>
<tr>
<td>Pentane and toluene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insolubles [%m(A/B)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash content (oxide ash)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel fuel dilution [%m]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidation and nitrination</td>
<td></td>
<td></td>
<td>FTIR method</td>
<td>X</td>
</tr>
<tr>
<td>Wear metal analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:

ISO : The International Organisation for Standardisation
ASTM : American Society for Testing and Materials
IP : The Institute of Petroleum
DIN : Deutsches Institut für Normung
AFNOR : Association Francaise de Normalisation
JIS : Japan Industry Specification
Notes:
1. Oil change intervals prescribed by Diesel engine makers have strongly to be observed.
2. The use of test methods other than mentioned above requires approval of TL.

CİLT C – KISIM 27 – BOYLARI 24 M. DEN KÜCÜK AHŞAP YOLCU TEKNELERİNİN
YAPIMI VE KLASLANMASINA İLİŞKİN KURALLAR

01. Bölüm 1 - Tekne Konstrüksiyonu - Genel İstekler
Revizyon Tarihi: Ağustos 2014
Yürürlüğe Giriş Tarihi: Ocak 2015
A.2.2 maddesi aşağıdaki şekilde revize edilmiştir:

... – 12’den fazla yolcu taşıyan, kıyıdan itibaren 6 deniz mili mesafe aşılmaksizin sefer yapan ahşap yolcu tekneleri ... AHŞAP YOLCU TEKNESİ WOODEN PASSENGER VESSEL – K6
– 12’den fazla 36’dan az yolcu taşıyan, kıyıdan itibaren 20 deniz mili mesafe aşılmaksizin sefer yapan ve Bölüm 6, F.’de belirtilen ilave kurallara uygun olan ahşap yolcu tekneleri .. AHŞAP YOLCU TEKNESİ WOODEN PASSENGER VESSEL – K20

02. Bölüm 2 – Tekne Konstrüksiyonu – Ahşap Tekneler
Revizyon Tarihi: Mayıs 2014
Yürürlüğe Giriş Tarihi: Ocak 2015
C.5.3 maddesi aşağıdaki şekilde revize edilmiştir:

Kol boyu 250mm den az olan döşekler, postalara en az 3 civata ile, daha uzun olanlar ise civataların arası 80 mm’yi aşmayacak şekilde uygun sayıda civata ile bağlanacaktır. İç omurgalı teknelerde, uygun aralıklı 4 civata ile bağlanabilir. aşağıdaki formül e göre belirlenen sayıda civata ile bağlanacaktır.

\[n = \frac{0.096 \cdot \ell}{d} \]

burada;

\[\ell = \text{döşek kol boyu} \]
Dizaynerce farklı cıvata çaplarının seçilmesi durumunda farklı cıvata adedi, kural isteklerine eşdeğer bir bağlantıyı sağlaması koşuluyla kabul edilebilir.

03. Bölüm 6 - Yangından Korunma
Revizyon Tarihi: Nisan 2014
Yürürlüğe Giriş Tarihi: Ocak 2015

C.2.2.2 maddesi aşağıdaki şekilde revize edilmiştir:

... Ana yangın pompası ile ilave yangın pompasının kendi güç kaynakları ve deniz bağlantıları ile birlikte iki farklı mahalde yer alması şartı ile ikinci pompa (ilave yangın pompası) el tahrikli olabilir. İlave yangın pompasının kapasitesi, ana yangın pompa kapasitesinin en az %80'i olacak ve 2.1.1'deki gereksinimleri sağlayacaktır.

PART D – CHAPTER 53 – SUBMERSIBLES

01. Annex C - Acrylic Windows
Revision Date: July 2014
Entry Into Force Date: January 2015

Table C.1 has been revised as follows:

<table>
<thead>
<tr>
<th>Properties</th>
<th>Specified values</th>
<th>Test method</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate tensile strength</td>
<td>≥ 62 N/mm²</td>
<td>DIN 53455 DIN EN ISO 527-1 & 527-2 (1) standard climate 23/50</td>
<td>D 638 (1)</td>
</tr>
<tr>
<td>Elongation at break (in relation to necking zone)</td>
<td>≥ 2 %</td>
<td>Specimen type 3 test velocity II standard climate 23/50.</td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity measured by tensile test</td>
<td>≥ 2760 N/mm²</td>
<td>DIN 53457 DIN EN ISO 527-1</td>
<td></td>
</tr>
<tr>
<td>Compressive yield strength</td>
<td>≥ 103 N/mm²</td>
<td>DIN 53454 DIN EN ISO 604 (1) standard climate 23/50 size of test specimen:</td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity measured by compression test</td>
<td>≥ 2760 N/mm²</td>
<td>25 × 12,5 × 12,5 mm</td>
<td>D 695 (1)</td>
</tr>
<tr>
<td>Compressive deformation</td>
<td>≤ 1 %</td>
<td>Constant compressive stress (1) of 27,5 N/mm² for 24 h at 50 °C test cube:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12,5 mm edge length</td>
<td>D 621 (1)</td>
</tr>
<tr>
<td>Property</td>
<td>Requirement</td>
<td>Test Method</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
<td>------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Ultraviolet transmittance</td>
<td>≤ 5 %</td>
<td>UV-spectrophotometer</td>
<td>E 308</td>
</tr>
<tr>
<td>wave length range: 290 - 370 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thickness of specimen: 12,5 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual clarity</td>
<td>Legibility</td>
<td>A 25 x 25 mm standard type set comprising</td>
<td>D 702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 lines of 16 letters each is to be clearly legible through the acrylic plastic pane</td>
<td>D 4802</td>
</tr>
<tr>
<td>Residual monomers methyl methacrylate</td>
<td>≤ 1,6 %</td>
<td>Gas chromatograph</td>
<td></td>
</tr>
<tr>
<td>acrylate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) *The mechanical properties are to be verified on at least 2 specimens.*

02. Annex E - Basic Requirements For Umbilicals

Revision Date: July 2014

Entry Into Force Date: January 2015

Items B.3.3 and D.2.1 have been revised as follows:

B.3.3 Fundamentally the electric and electronic characteristics specified for the project have to be proven, e.g. by a type test according to IEC 60092-350/351 and IEC 60092-360. ...

D.2.1 ...

– If gases with a content by volume greater 25 % oxygen shall be transported, all materials coming into contact with oxygen are to be checked for their oxygen suitability (e.g. according to EN 559 DIN EN ISO 3821). For allowable working pressures of more than 25 bar an oxygen pressure surge test is to be performed (e.g. according to EN 15333-1). ...

PART E – CHAPTER 101 – NAVAL SHIP TECHNOLOGY, CLASSIFICATION AND SURVEYS

01. Section 2 – Class Designation

Revision Date: December 2014

Entry Into Force Date: January 2015

Item B.4 has been added as follows:

4. **Use of Alternative/Additional Standards**

(NS) is appended to the Character of Classification in agreement with TL and the Naval Authority when alternative or additional standards which represent significant changes to TL Rules or additional requirements to the TL Rule Requirements are applied. Alternative or additional standards are normally raised by the designer or builder.
Alternative or additional standards are to be documented or stated in advance of design appraisal and they are to be clearly defined and referenced in the Classification Certificates and any other required registers such as lifting appliances.

The following can be example uses of (NS):

N (NS), M (NS), SFP (NS), LA (NS)

PART E – CHAPTER 102 – NAVAL SHIP TECHNOLOGY, HULL STRUCTURES AND SHIP EQUIPMENT

01. Section 1 – General
Revision Date: July 2014
Entry Into Force Date: January 2015

Item A.2 has been revised as follows:

2. Equivalence

2.1 Naval ships deviating from the TL Rules in their type, equipment or in some of their parts may be classed, provided that their structures or equipment are found to be equivalent to the TL requirements for the respective Class.

2.2 In this respect, TL can accept alternative design, arrangements and calculation/analyses (FE, FMEA, etc.) which are suitable to satisfy the intent of the respective TL requirements and to achieve the equivalent safety level.

02. Section 2 – Subdivision and Stability
Revision Date: November 2014
Entry Into Force Date: January 2015

Figure 2.2 and item C.2.3.1.4 have been revised as follows:

WL1 Equilibrium floating condition
WL2 Floating condition considering wind and free surface
Watertight area above the bulkhead deck

Fig. 2.2 Cross section at a watertight bulkhead

2.3.1.4 Openings for doors and other purposes have to be located in the midship area, but at least at a distance of and in no case shall the outboard edge of such openings be situated at a distance from the shell plating which is less than 0,2 B measured at right angles to the centreline at the level of the maximum draught.

03. Section 3 - Materials And Corrosion Protection

Revision Date: November 2014
Entry Into Force Date: January 2015

Item F.4.3 has been revised as follows:

The selection of anodes, protection current requirements, mass calculation and arrangement of anodes shall be accordance with the *Guidelines for Corrosion Protection and Coating Systems, Section 8, C. TL Rules, Part A, Chapter 1, Hull, Section 22, J.2.*

04. Section 4 - Design Principles

Revision Date: July 2014
Entry Into Force Date: January 2015

Misspellings have been corrected in the section.

05. Section 5 - Design Loads

Revision Date: July 2014
Entry Into Force Date: January 2015

Misspellings have been corrected in the section.

06. Section 7 - Bottom And Shell Structures

Revision Date: July 2014
Entry Into Force Date: January 2015

Misspellings have been corrected in the section.

07. Section 19 – Hull Outfit

Revision Date: October 2014
Entry Into Force Date: January 2015

A new paragraph has been added to item E.2.2 as follows:

Freeing port areas which includes alternative solutions as direct seakeeping calculations (possibility of wet deck calculations etc.) should be accepted in accordance with Naval Authority and TL.
PART E – CHAPTER 104 – NAVAL SHIP TECHNOLOGY, PROPULSION PLANTS

01. Section 1 – General Rules And Instructions
Revision Date: July 2014

Entry Into Force Date: January 2015

Item A.8 has been added as follows:

8. Equivalence

8.1 Naval ships deviating from the TL Rules in their type, equipment or in some of their parts may be classed, provided that their structures or equipment are found to be equivalent to the TL requirements for the respective Class.

8.2 In this respect, TL can accept alternative design, arrangements and calculation/analyses (FE, FMEA, etc.) which are suitable to satisfy the intent of the respective TL requirements and to achieve the equivalent safety level.

PART E – CHAPTER 105 – NAVAL SHIP TECHNOLOGY, ELECTRICAL INSTALLATIONS

01. Section 1 – General Requirements And Instructions
Revision Date: July 2014

Entry Into Force Date: January 2015

Item A.4 has been added as follows:

4. Equivalence

4.1 Naval ships deviating from the TL Rules in their type, equipment or in some of their parts may be classed, provided that their structures or equipment are found to be equivalent to the TL requirements for the respective Class.

4.2 In this respect, TL can accept alternative design, arrangements and calculation/analyses (FE, FMEA, etc.) which are suitable to satisfy the intent of the respective TL requirements and to achieve the equivalent safety level.

02. Section 2 - Installation Of Electrical Equipment
Revision Date: May 2014

Entry Into Force Date: January 2015

Title of item E has been revised as follows:

E. LOW VOLTAGE SWITCHBOARDS
PART E – CHAPTER 106 – NAVAL SHIP TECHNOLOGY, AUTOMATION

01. Section 1 – General Rules And Instructions
Revision Date: July 2014
Entry Into Force Date: January 2015

Item A.4 has been added as follows:

4. Equivalence

4.1 Naval ships deviating from the TL Rules in their type, equipment or in some of their parts may be classed, provided that their structures or equipment are found to be equivalent to the TL requirements for the respective Class.

4.2 In this respect, TL can accept alternative design, arrangements and calculation/analyses (FE, FMEA, etc.) which are suitable to satisfy the intent of the respective TL requirements and to achieve the equivalent safety level.

PART E – CHAPTER 107 – NAVAL SHIP TECHNOLOGY, SHIP OPERATION INSTALLATIONS and AUXILIARY SYSTEMS

01. Section 1 – General Rules And Instructions
Revision Date: July 2014
Entry Into Force Date: January 2015

Item A.5 has been added as follows:

5. Equivalence

5.1 Naval ships deviating from the TL Rules in their type, equipment or in some of their parts may be classed, provided that their structures or equipment are found to be equivalent to the TL requirements for the respective Class.

5.2 In this respect, TL can accept alternative design, arrangements and calculation/analyses (FE, FMEA, etc.) which are suitable to satisfy the intent of the respective TL requirements and to achieve the equivalent safety level.

02. Section 7 – Storage Of Liquid Fuels, Lubricating And Hydraulic Oils As Well As Oil Residues
Revision Date: March 2014
Entry Into Force Date: January 2015

Item C.1 has been revised as follows:
... Concerning the arrangement of lubrication and hydraulic oil tanks besides fuel tanks as well as tanks for boiler feed water, condensate and fresh water B.1.5 to B.1.7 apply accordingly. ...

03. Section 8 – Piping Systems, Valves and Pumps
Revision Date: November 2014
Entry Into Force Date: January 2015
Table 8.3 has been revised as follows:

<table>
<thead>
<tr>
<th>Pipe class</th>
<th>Type of component</th>
<th>Approved materials</th>
<th>Design temperature</th>
<th>Subject to testing</th>
<th>TL Rules Chapter 2 - Materials</th>
<th>Type of material certificate according to EN 10204 (DIN 50049)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2 3.1-C (TL) 3.1 B 2.2</td>
</tr>
</tbody>
</table>

04. Section 8 – Piping Systems, Valves and Pumps
Revision Date: January 2014
Entry Into Force Date: January 2015
Item G.5 has been revised as follows:

... For plants with more than one main engine, see also Section 2, G Chapter 104 - Propulsion Plants, Section 3, G.

05. Section 11 - Ventilation Systems
Revision Date: September 2014
Entry Into Force Date: January 2015
Section 11 has been revised totally.

EK KURALLAR - SEVK SİSTEMİNİN TEMELLERE YERLEŞTİRİLMESİ İÇİN KURALLAR

01. Genel
Revizyon Tarihi: Ağustos 2014
Yürürlüğe Giriş Tarihi: Ocak 2015
Kuralın tamamı gözden geçirilerek revize edilmiştir.
01. General
Revision Date: August 2014
Entry Into Force Date: January 2015
Item 2.1 has been revised as follows:

01. UI MPC12
Revision Date: November 2014
Entry Into Force Date: January 2015
According to IACS UI MPC12 Rev.2 and Rev.2 Corr.1, item UI MPC12 has been revised as follows:

MPC 12
(July 2004)
(Rev.1 Mar 2006)
(Rev.2 Apr 2014)
(Corr.1 June 2014)

Annex VI of MARPOL 73/78

Regulation 1

Application

Regulation 1 reads as follows:

The provisions of this Annex shall apply to all ships, except where expressly provided otherwise in regulations 3, 5, 6, 13, 15, 16, 18, 19, 20, 21 and 22 of this Annex.

Interpretation:

For application of this regulation the term “all ships” shall be interpreted as applicable to all ships as defined by MARPOL 73 Article 2 (4).

Note:
1. This UI is to be uniformly implemented by IACS Societies from 19 May 2005.

2. Revision 1 of this UI is to be uniformly implemented by IACS Societies from 1 July 2006.

3. Rev.2 of the UI is to be uniformly implemented by IACS Societies from 1 January 2015.

02. UI MPC14

Revision Date: November 2014
Entry Into Force Date: January 2015

According to IACS UI MPC14 Rev.1 and Corr.1, item UI MPC14 has been revised as follows:

MPC 14

(July 2004)

(Rev.1 Apr 2014)

(Corr.1 June 2014)

Annex VI of MARPOL 73/78

Regulation 1 / Regulation 5.2

Application / Surveys and Inspections

Regulation 1 reads as follows:

The provisions of this Annex shall apply to all ships, except where expressly provided otherwise in regulations 3, 5, 6, 13, 15, 16, 18, 19, 20, 21 and 22 of this Annex.

Regulation 5.2 reads as follows:

In the case of ships of less than 400 gross tonnage, the Administration may establish appropriate measures in order to ensure that the applicable provisions of chapter 3 are complied with.

Interpretation:

It shall be interpreted that all marine diesel engines over 130 kW except those exempted by Regulation 3 or Regulation 13 are to comply with the Regulation 13 limit regardless of the gross tonnage of the ship onto which the engine is installed. In this context such engines must have an approved Technical File and must be issued with an EIAPP certificate in accordance with the NOx Technical Code in all cases.

However the application of the ship surveys as given in Regulation 5.2 to ships under 400 GT would be at the discretion of the relevant Administration.

Note:

1. This UI is to be uniformly implemented by IACS Societies from 19 May 2005.
2. Rev.1 of the UI is to be uniformly implemented by IACS Societies from 1 January 2015.

03. UI MPC20

Revision Date: November 2014

Entry Into Force Date: January 2015

According to IACS UI MPC20 Rev.1, item UI MPC20 has been revised as follows:

MPC 20

(July 2004)

(Rev.1 Apr 2014)

Annex VI of MARPOL 73/78

Regulation 13.2.1.1 and 13.2.2

Application

Regulation 13.2.1.1 reads as follows:

For the purpose of this regulation, major conversion means a modification on or after 1 January 2000 of a marine diesel engine that has not already been certified to the standards set forth in paragraph 3, 4, or 5.1.1 of this regulation where:

.1 the engine is replaced by a marine diesel engine or an additional marine diesel engine is installed, or

Regulation 13.2.2 reads as follows:

For a major conversion involving the replacement of a marine diesel engine with a nonidentical marine diesel engine or the installation of an additional marine diesel engine, the standards in force at the time of the replacement or addition shall apply.

Interpretation

This section shall be interpreted, in respect of engines installed on or after 1 January 2000 but before 1 July 2010*, on the basis of regulation 13(2)(a)(i) which applied at that time in which it was given that “For the purpose of this regulation, major conversion, means a modification of an engine where the engine is replaced by a new engine built on or after 1 January 2000.” follows:

(a) For application of regulation 13(2)(a)(i) the term “replaced” shall be interpreted as being applicable to an engine installed either as a direct replacement for an existing engine or one installed as an addition to the original engine complement as at 1 January 2000 to meet revised ship requirements; and,

(b) For application of regulation 13(2)(a)(i) the term “new” shall be interpreted as applying to engines that left the manufacturer’s works for the first time on or after 1 January 2000.
For IACS interpretation of “date of installation” see MPC 98

Note:

1. This UI is to be uniformly implemented by IACS Societies from 19 May 2005.

2. Rev.1 of the UI is to be uniformly implemented by IACS Societies from 1 January 2015.

04. UI MPC29

Revision Date: November 2014

Entry Into Force Date: January 2015

According to IACS UI MPC29 Rev.1, item UI MPC29 has been revised as follows:

MPC 29

(July 2004)

(Rev.1 Apr 2014)

Annex VI of MARPOL 73/78

Regulation 18.5 and 18.6

Application

Regulation 18.5 reads as follows:

For each ship subject to regulations 5 and 6 of this Annex, details of fuel oil for combustion purposes delivered to and used on board shall be recorded by means of a bunker delivery note that shall contain at least the information specified in appendix V to this Annex.

Regulation 18.6 reads as follows:

The bunker delivery note shall be kept on board the ship in such a place as to be readily available for inspection at all reasonable times. It shall be retained for a period of three years after the fuel oil has been delivered on board.

Interpretation:

For application of these regulation it shall be interpreted as applicable to all ships of 400 gross tonnage or above and, at the Administration’s discretion, for ships of less than 400 gross tonnage.

Note:

1. This UI is to be uniformly implemented by IACS Societies from 19 May 2005.

2. Rev.1 of the UI is to be uniformly implemented by IACS Societies from 1 January 2015.
For further information:

Kemal AKŞAR

Head of Department, Research & Rule Development

TÜRK LOYDU PLAN CONTROL & RESEARCH DIVISION

Tel: +90- 216 581 38 84
Fax: +90- 216 581 38 40
E-mail: kaksar@turkloydu.org

Web: www.turkloydu.org LEGAL NOTICE All rights reserved.

The information contained here is for general information purposes only.

Türk Loydu shall be under no liability or responsibility in contract or negligence or otherwise howsoever to any person in respect of any information or advice expressly or impliedly given in this document, or in respect of any inaccuracy herein or omission here from or in respect of any act or omission which has caused or contributed to this document being issued with the information or advice it contains (if any).